def create_correction_maps(self, date):
        ''' loads data to create the bias correction map '''
        if mode == 'base':
            # to create base error maps
            filename_mean_error = 'analysis/mean_drifterror/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
            filename_mean_error_extent = 'analysis/mean_drifterror_extent/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
        elif mode == 'corrected':
            #to create error maps with drift correction
            filename_mean_error = 'analysis/mean_drifterror_new/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
            filename_mean_error_extent = 'analysis/mean_drifterror_extent_new/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])

        mixmap_name = 'analysis/icedrift_correction/SIPN2_error_{}{}.bin'.format(
            date[1], date[2])

        error_map = CryoIO.openfile(filename_mean_error, np.float16) / 100
        error_map2 = CryoIO.openfile(filename_mean_error_extent,
                                     np.float16) / 100

        mix_map = self.mix_errormaps(error_map, error_map2)

        export = np.array(mix_map * 100, dtype=np.float16)
        CryoIO.savebinaryfile(mixmap_name, export)

        self.errorshow(mix_map, 5, date, 'Correction Map')
        self.fig3.savefig('Images/Correction/Correction_Map_{}{}{}'.format(
            date[0], date[1], date[2]))
def calcMeanerrorgrid():
    '''calculation for mean error grid'''
    datelist = dateloop()
    p = Pool(processes=22)
    data = p.map(spawnprocess_mean_calc, datelist)
    print(len(data))
    p.close()
    CryoIO.csv_columnexport('analysis/mean_error.csv', [data])
    def calc_difference(self, icepredict, iceobserve, filename_error):
        '''calculates the SIC error for a single day'''

        error_map = icepredict - iceobserve

        for x, y in enumerate(error_map):
            if self.regmaskf[x] > 10:
                error_map[x] = 0

        error_map = np.array(error_map * 100, dtype=np.float16)
        CryoIO.savebinaryfile(filename_error, error_map)
        return
    def masksload(self):
        ''' Loads NSIDC masks'''
        filename = 'X:/NSIDC_South/Masks/region_s_pure.msk'
        self.regmaskf = CryoIO.openfile(filename, np.uint8)

        filename = 'X:/NSIDC_South/Masks/pss25area_v3.dat'
        self.areamaskf = CryoIO.openfile(filename, np.int32) / 1000

        filename = 'X:/NSIDC_South/Masks/pss25lats_v3.dat'
        self.latmaskf = CryoIO.openfile(filename, np.int32) / 100000

        filename = 'X:/NSIDC_South/Masks/pss25lons_v3.dat'
        self.lonmaskf = CryoIO.openfile(filename, np.int32) / 100000
Example #5
0
    def masksload(self):
        ''' Loads NSIDC masks and Daily Solar Energy Data'''
        filename = 'X:/NSIDC_South/Masks/region_s_pure.msk'
        self.regmaskf = CryoIO.openfile(filename, np.uint8)

        filename = 'X:/NSIDC_South/Masks/pss25area_v3.dat'
        self.areamaskf = CryoIO.openfile(filename, np.int32) / 1000

        filename = 'X:/NSIDC_South/Masks/pss25lats_v3.dat'
        self.latmaskf = CryoIO.openfile(filename, np.int32) / 100000

        filename = 'X:/NSIDC_South/Masks/pss25lons_v3.dat'
        self.lonmaskf = CryoIO.openfile(filename, np.int32) / 100000

        self.latitudelist = np.loadtxt(
            'X:/NSIDC_South/Masks/Lattable_south_MJ_all_year.csv',
            delimiter=',')
        self.co2list = np.loadtxt('X:/NSIDC_South/Masks/Global_CO2.csv',
                                  delimiter=',')
Example #6
0
    def masksload(self):
        ''' Loads NSIDC masks and Daily Solar Energy Data'''
        filename = 'X:/NSIDC/Masks/Arctic_region_mask.bin'
        self.regmaskf = CryoIO.openfile(filename, np.uint32)

        filename = 'X:/NSIDC/Masks/psn25area_v3.dat'
        self.areamaskf = CryoIO.openfile(filename, np.uint32) / 1000

        filename = 'X:/NSIDC/Masks/psn25lats_v3.dat'
        self.latmaskf = CryoIO.openfile(filename, np.uint32) / 100000

        filename = 'X:/NSIDC/Masks/psn25lons_v3.dat'
        self.lonmaskf = CryoIO.openfile(filename, np.uint32) / 100000

        self.latitudelist = np.loadtxt(
            'X:/NSIDC/Masks/Lattable_MJ_all_year.csv', delimiter=',')
        self.co2list = np.loadtxt('X:/NSIDC/Masks/Global_CO2_forecast.csv',
                                  delimiter=',')
        self.templist = np.loadtxt('X:/NSIDC/Masks/DMI_Temp_80N.csv',
                                   delimiter=',')
    def getvolume(self, thickness, daycount, day, month, year):
        ''' first day initialisation '''
        self.daycount = daycount
        self.start = date(year, month, day)
        self.loopday = self.start
        self.year = year
        self.stringmonth = str(self.loopday.month).zfill(2)
        self.stringday = str(self.loopday.day).zfill(2)
        self.datestring = '{}{}{}'.format(self.year, self.stringmonth,
                                          self.stringday)
        lastday = '{}{}{}'.format(self.year, self.stringmonth, self.stringday)
        self.index = self.loopday.timetuple().tm_yday
        self.yearday = self.loopday.timetuple().tm_yday

        print(thickness, 'meter')
        self.CSVDatum = ['Date']
        self.CSVVolume = [f'Volume_{year}']
        self.CSVExtent = [f'Extent_{year}']
        self.CSVArea = [f'Area_{year}']

        filename = 'X:/NSIDC_south/DataFiles/NSIDC_{}_south.bin'.format(
            lastday)

        self.iceLastDate = CryoIO.openfile(filename, np.uint8) / 250

        # Landmask initialisation
        for x in range(0, len(self.iceLastDate)):
            if self.regmaskf[x] > 7:
                self.iceLastDate[x] = 9

        # thickness initialisation
        for x in range(0, len(self.iceLastDate)):
            if self.regmaskf[x] < 7:
                if 0.25 < self.iceLastDate[x] <= 1 and self.latmaskf[x] < -55:
                    self.iceLastDate[x] = thickness * self.iceLastDate[x]
                elif 0.1 < self.iceLastDate[x] < 0.25 and self.latmaskf[
                        x] < -55:
                    self.iceLastDate[
                        x] = thickness * self.iceLastDate[x] + 0.05
                else:
                    self.iceLastDate[x] = -1
            if self.regmaskf[x] < 1:
                self.iceLastDate[x] = 0


#		self.normalshow(self.iceLastDate,volume,area,'Mean')

        self.prediction()
        end = time.time()
        print(end - self.starttime)
        return self.CSVArea, self.CSVExtent
    def compute_error(self):
        '''loads data for computation of SIC error and extent error of a single day'''
        filename_obs = 'X:/NSIDC_South/DataFiles/NSIDC_{}_south.bin'.format(
            self.datestring)
        filename_pre = 'analysis/predict/SIPN2_{}.bin'.format(self.datestring)

        if mode == 'base':
            filename_error = 'analysis/forecast/SIPN2_error_{}.bin'.format(
                self.datestring)
            filename_extent_error = 'analysis/forecast_extent/SIPN2_error_{}.bin'.format(
                self.datestring)
        elif mode == 'corrected':
            filename_error = 'analysis/drifterror_new/SIPN2_error_{}.bin'.format(
                self.datestring)
            filename_extent_error = 'analysis/extent_error_new/SIPN2_error_{}.bin'.format(
                self.datestring)

        iceobserve = CryoIO.openfile(filename_obs, np.uint8) / 250
        iceforecast = CryoIO.openfile(filename_pre, np.uint8) / 250

        #SIC error
        self.calc_difference(iceforecast, iceobserve, filename_error)

        #---------------------------
        #extent error
        aaa = np.vectorize(self.calc_extent_error)
        error_map, extent_over, extent_under = aaa(iceforecast, iceobserve,
                                                   self.regmaskf)
        export = np.array(error_map * 100, dtype=np.int8)
        CryoIO.savebinaryfile(filename_extent_error, export)

        extent_over = sum(extent_over)
        extent_under = sum(extent_under)
        extent_total = extent_over + extent_under
        self.extent_list_over.append(extent_over)
        self.extent_list_under.append(extent_under)
        self.extent_list_total.append(extent_total)
        self.CSVDatum.append(self.datestring)
    def calc_error_of_mean_grid(self, date):
        '''calculates the error of the mean error maps'''
        if mode == 'base':
            # to create base error maps
            SIC_map = 'analysis/mean_drifterror/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
            extent_map = 'analysis/mean_drifterror_extent/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
        elif mode == 'corrected':
            #to create error maps with drift correction
            SIC_map = 'analysis/mean_drifterror_new/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
            extent_map = 'analysis/mean_drifterror_extent_new/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])

        #---------------------------
        #show mean error
        error_map1 = CryoIO.openfile(SIC_map, np.float16) / 100
        aaa = np.vectorize(self.show_mean_error)
        error_map1, extent1 = aaa(error_map1, self.regmaskf)

        error_map2 = CryoIO.openfile(extent_map, np.float16) / 100
        aaa = np.vectorize(self.show_mean_error)
        error_map2, extent2 = aaa(error_map2, self.regmaskf)
        #---------------------------

        extent1 = sum(extent1)
        extent2 = sum(extent2)

        self.errorshow(error_map1, extent1, date, 'SIC Error')
        self.fig3.savefig('Images/SIC/SIC_{}{}{}'.format(
            date[0], date[1], date[2]))
        self.errorshow(error_map2, extent2, date, 'Extent Error')
        self.fig3.savefig('Images/SIE/SIE_{}{}{}'.format(
            date[0], date[1], date[2]))

        return '{}/{}/{}'.format(date[0], date[1], date[2]), extent1, extent2
Example #10
0
    def getvolume(self, thickness, daycount, day, month, year):
        ''' first day initialisation '''
        self.daycount = daycount
        self.start = date(year, month, day)
        self.loopday = self.start
        self.year = year
        self.stringmonth = str(self.loopday.month).zfill(2)
        self.stringday = str(self.loopday.day).zfill(2)
        self.datestring = '{}{}{}'.format(self.year, self.stringmonth,
                                          self.stringday)
        self.index = self.loopday.timetuple().tm_yday
        self.meltmomentum = self.index

        print(thickness, 'meter')
        self.CSVDatum = ['Date']
        self.CSVVolume = [f'Volume_{year}']
        self.CSVExtent = [f'Extent_{year}']
        self.CSVArea = [f'Area_{year}']

        filename = 'X:/NSIDC/DataFiles/NSIDC_{}.bin'.format(self.datestring)

        self.iceLastDate = CryoIO.openfile(filename, np.uint8) / 250
        self.sicmap = np.zeros(len(self.iceLastDate), dtype=np.uint8)

        # Landmask initialisation
        for x in range(0, len(self.iceLastDate)):
            if self.regmaskf[x] > 15:
                self.iceLastDate[x] = 9
                self.sicmap[x] = 255

        # thickness initialisation
        for x in range(0, len(self.iceLastDate)):
            if 1 < self.regmaskf[x] < 16:
                if self.iceLastDate[x] > 0.15:
                    self.iceLastDate[x] = thickness * self.iceLastDate[x] * (
                        self.latmaskf[x] / 75)
            if self.regmaskf[x] < 2:
                self.iceLastDate[x] = 0

        #SIT export for SIPN analysis
#		CryoIO.savebinaryfile('SIPN2_thickness_20200601.bin',self.iceLastDate)

#		self.normalshow(self.iceLastDate,volume,area,'Mean')
        self.prediction()  # start dayloop
        end = time.time()
        print(end - self.starttime)
        # 		self.csvexport_by_forecasttype()
        #		plt.show()
        return self.CSVArea, self.CSVExtent
    def csvexport_by_measure(self):
        ''' Export values option 2 '''
        exportpath = 'X:/Sea_Ice_Forecast/SIPN_north/'
        CryoIO.csv_columnexport(
            '{}__SIPN_forecast_Volume{}.csv'.format(exportpath, self.year), [
                self.CSVDatum, self.CSVVolumeLow, self.CSVVolume,
                self.CSVVolumeHigh
            ])
        CryoIO.csv_columnexport(
            '{}__SIPN_forecast_Area{}.csv'.format(exportpath, self.year),
            [self.CSVDatum, self.CSVAreaLow, self.CSVArea, self.CSVAreaHigh])
        CryoIO.csv_columnexport(
            '{}__SIPN_forecast_Extent{}.csv'.format(exportpath, self.year), [
                self.CSVDatum, self.CSVExtentLow, self.CSVExtent,
                self.CSVExtentHigh
            ])

        CryoIO.csv_columnexport(
            '{}_SIPN_forecast_066_{}.csv'.format(exportpath, self.year),
            [self.CSVDatum, self.CSVAlaska])
    def csvexport_by_forecasttype(self):
        ''' Exporting values option 1 '''
        exportpathHigh = 'X:/Sea_Ice_Forecast/SIPN_north/'
        exportpath = 'X:/Sea_Ice_Forecast/SIPN_north/'
        exportpathLow = 'X:/Sea_Ice_Forecast/SIPN_north/'
        CryoIO.csv_columnexport(
            '{}_SIPN_forecast_002_{}.csv'.format(exportpath, self.year),
            [self.CSVDatum, self.CSVVolume, self.CSVArea, self.CSVExtent])
        CryoIO.csv_columnexport(
            '{}_SIPN_forecast_003_{}.csv'.format(exportpathHigh, self.year), [
                self.CSVDatum, self.CSVVolumeHigh, self.CSVAreaHigh,
                self.CSVExtentHigh
            ])
        CryoIO.csv_columnexport(
            '{}_SIPN_forecast_001_{}.csv'.format(exportpathLow, self.year), [
                self.CSVDatum, self.CSVVolumeLow, self.CSVAreaLow,
                self.CSVExtentLow
            ])

        CryoIO.csv_columnexport(
            '{}_SIPN_forecast_066_{}.csv'.format(exportpath, self.year),
            [self.CSVDatum, self.CSVAlaska])
    def create_mean_error_grid(self, date):
        ''''calculates a mean error map for the entire dataset'''
        data = []
        data_extent = []

        if mode == 'base':
            # to create base error maps
            filename_out = 'analysis/mean_drifterror/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
            filename_out_extent = 'analysis/mean_drifterror_extent/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
        elif mode == 'corrected':
            #to create error maps with drift correction
            filename_out = 'analysis/mean_drifterror_new/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])
            filename_out_extent = 'analysis/mean_drifterror_extent_new/SIPN2_error_{}{}.bin'.format(
                date[1], date[2])

        for year in range(2001, 2021):
            if mode == 'base':
                filename_error = 'analysis/forecast/SIPN2_error_{}{}{}.bin'.format(
                    year, date[1], date[2])
                filename_error_extent = 'analysis/forecast_extent/SIPN2_error_{}{}{}.bin'.format(
                    year, date[1], date[2])
            elif mode == 'corrected':
                filename_error = 'analysis/drifterror_new/SIPN2_error_{}{}{}.bin'.format(
                    year, date[1], date[2])
                filename_error_extent = 'analysis/extent_error_new/SIPN2_error_{}{}{}.bin'.format(
                    year, date[1], date[2])

            ice = CryoIO.openfile(filename_error, np.float16)  #int8
            ice_extent = CryoIO.openfile(filename_error_extent,
                                         np.int8)  #float16

            data.append(ice)
            data_extent.append(ice_extent)

        ice = self.calcMean(data)
        ice_extent = self.calcMean(data_extent)
        export = np.array(ice, dtype=np.float16)
        export_extent = np.array(ice_extent, dtype=np.float16)
        CryoIO.savebinaryfile(filename_out, export)
        CryoIO.savebinaryfile(filename_out_extent, export_extent)
def calcsingleyearerror():
    '''calculation for single year error grids'''
    datalist = []
    for year in range(2000, 2021):
        datalist.append(year)

    p = Pool(processes=22)
    data = p.map(spawnprocess, datalist)
    print(len(data))
    p.close()

    extent_under = []
    extent_over = []
    extent_total = []
    for x in data:
        extent_under.append(x[0])
        extent_over.append(x[1])
        extent_total.append(x[2])


# 	action = NSIDC_analysis()
    CryoIO.csv_columnexport('analysis/extent_under.csv', extent_under)
    CryoIO.csv_columnexport('analysis/extent_over.csv', extent_over)
    CryoIO.csv_columnexport('analysis/extent_total.csv', extent_total)
Example #15
0
    def prediction(self):
        ''' Starts the day loop'''
        filepath = 'X:/NSIDC_South/DataFiles/'
        filename = 'NSIDC_{}{}{}_south.bin'.format(self.year, self.stringmonth,
                                                   self.stringday)
        countmax = self.index + self.daycount

        iceforecast = CryoIO.openfile(os.path.join(filepath, filename),
                                      np.uint8) / 250

        self.iceMean = np.array(self.iceLastDate, dtype=float)
        self.iceHigh = np.array(self.iceLastDate, dtype=float)
        self.iceLow = np.array(self.iceLastDate, dtype=float)

        for count in range(self.index, countmax, 1):
            filename = 'NSIDC_{}_south.bin'.format(self.datestring)
            filenameAvg = 'Mean_00_19/NSIDC_Mean_{}{}_south.bin'.format(
                self.stringmonth, self.stringday)
            filenameChange = 'Daily_change/NSIDC_SIC_Change_{}{}_south.bin'.format(
                self.stringmonth, self.stringday)
            filenameStdv = 'Stdv/NSIDC_Stdv_{}{}_south.bin'.format(
                self.stringmonth, self.stringday)
            filenameDrift_error = 'analysis/icedrift_correction/SIPN2_error_{}{}.bin'.format(
                self.stringmonth, self.stringday)

            #338ppm base value in 1980
            co2listindex = (self.year - 1980) * 12 + self.loopday.month - 1
            co2value = self.co2list[co2listindex][1]
            self.back_radiation = self.base_back_radiation - 2 * co2value / 338

            self.bottommelt = self.base_bottommelt
            bottommelt = self.bottommelt
            bottommeltHigh = self.bottommelt * 0.9
            bottommeltLow = self.bottommelt * 1.2

            driftcorrection = self.icedrift_sim * 1
            driftcorrectionLow = self.icedrift_sim * 0.9
            driftcorrectionHigh = self.icedrift_sim * 1.1

            icedrift_error = CryoIO.openfile(filenameDrift_error,
                                             np.float16) / 100
            icedrift_error = icedrift_error

            #normal dtype:uint8 , filenameChange:int8 , filenameStdv: np.float16
            if count <= 336:  #change date of year to last available date
                iceforecast = CryoIO.openfile(os.path.join(filepath, filename),
                                              np.uint8) / 250

                #				self.early_recalibrate(iceforecast)

                self.iceMean, sicmap, extent, area, calcvolume = self.meltcalc(
                    iceforecast, icedrift_error, self.iceMean, bottommelt,
                    driftcorrection)
                self.iceHigh, sicmapHigh, extentHigh, areaHigh, calcvolumeHigh = self.meltcalc(
                    iceforecast, icedrift_error, self.iceHigh, bottommeltHigh,
                    driftcorrectionHigh)
                self.iceLow, sicmapLow, extentLow, areaLow, calcvolumeLow = self.meltcalc(
                    iceforecast, icedrift_error, self.iceLow, bottommeltLow,
                    driftcorrectionLow)

            else:
                icechange = CryoIO.openfile(
                    os.path.join(filepath, filenameChange), np.int8) / 250
                iceAvg = CryoIO.openfile(os.path.join(filepath, filenameAvg),
                                         np.uint8) / 250
                iceStdv = CryoIO.openfile(os.path.join(filepath, filenameStdv),
                                          np.float16) / 250

                iceforecast = iceforecast + icechange
                np.clip(iceforecast, 0, 1)
                iceforecastMean = (2 * iceforecast + iceAvg) / 3
                iceforecastHigh = np.array(iceforecastMean + iceStdv * 0.22)
                iceforecastLow = np.array(iceforecastMean - iceStdv * 0.30)

                iceforecastMean[iceforecastMean > 1] = 1
                iceforecastHigh[iceforecastHigh > 1] = 1
                iceforecastLow[iceforecastLow > 1] = 1
                iceforecastMean[iceforecastMean < 0] = 0
                iceforecastHigh[iceforecastHigh < 0] = 0
                iceforecastLow[iceforecastLow < 0] = 0

                self.iceMean, sicmap, extent, area, calcvolume = self.meltcalc(
                    iceforecastMean, icedrift_error, self.iceMean, bottommelt,
                    driftcorrection)
                self.iceHigh, sicmapHigh, extentHigh, areaHigh, calcvolumeHigh = self.meltcalc(
                    iceforecastHigh, icedrift_error, self.iceHigh,
                    bottommeltHigh, driftcorrection)
                self.iceLow, sicmapLow, extentLow, areaLow, calcvolumeLow = self.meltcalc(
                    iceforecastLow, icedrift_error, self.iceLow, bottommeltLow,
                    driftcorrection)

            self.CSVVolume.append(int(calcvolume))
            self.CSVExtent.append(round(int((extent)) / 1e6, 4))
            self.CSVArea.append(round(int((area)) / 1e6, 4))

            self.CSVVolumeHigh.append(int(calcvolumeHigh))
            self.CSVExtentHigh.append(round(int((extentHigh)) / 1e6, 4))
            self.CSVAreaHigh.append(round(int((areaHigh)) / 1e6, 4))

            self.CSVVolumeLow.append(int(calcvolumeLow))
            self.CSVExtentLow.append(round(int((extentLow)) / 1e6, 4))
            self.CSVAreaLow.append(round(int((areaLow)) / 1e6, 4))

            #			visualize.thicknessshow(self.iceMean,int(calcvolume),int(extent),'Mean',self.datestring)
            #			visualize.concentrationshow(sicmap,int(area),int(extent),'Mean',self.datestring)

            #save last date as arrary in mm
            # 			if count >= (countmax-15):
            # 			if count >330:
            #				visualize.thicknessshow(self.iceMean,int(calcvolume),int(extent),'Mean',self.datestring)
            # 				visualize.concentrationshow(sicmap,int(area),int(extent),'Mean',self.datestring)
            # 				visualize.fig2.savefig('Images/{}'.format(self.datestring))

            # =============================================================================
            # #				SIPN_analysis_south.thicknessshow(self.iceHigh,int(calcvolumeHigh),int(extentHigh),'High')
            # 				SIPN_analysis_south.concentrationshow(sicmapHigh,int(areaHigh),int(extentHigh),'High')
            #
            # #				SIPN_analysis_south.thicknessshow(self.iceLow ,int(calcvolumeLow),int(extentLow),'Low')
            # 				SIPN_analysis_south.concentrationshow(sicmapLow,int(areaLow),int(extentLow),'Low')
            # =============================================================================

            # convert SIT for binary export
            iceLastDateMean = self.iceMean
            iceLastDateMean = np.array(iceLastDateMean, dtype=np.float16)
            iceLastDateHigh = self.iceHigh
            iceLastDateHigh = np.array(iceLastDateHigh, dtype=np.float16)
            iceLastDateLow = self.iceLow
            iceLastDateLow = np.array(iceLastDateLow, dtype=np.float16)

            # save binary SIT maps
            exportpath = 'X:/Sea_Ice_Forecast/SIPN_south/2020-21_Submission/'
            CryoIO.savebinaryfile(
                '{}001/SIPN2_SIT_001_{}.bin'.format(exportpath,
                                                    self.datestring),
                iceLastDateLow)
            CryoIO.savebinaryfile(
                '{}002/SIPN2_SIT_002_{}.bin'.format(exportpath,
                                                    self.datestring),
                iceLastDateMean)
            CryoIO.savebinaryfile(
                '{}003/SIPN2_SIT_003_{}.bin'.format(exportpath,
                                                    self.datestring),
                iceLastDateHigh)

            # save binary SIC maps
            exportpath = 'X:/Sea_Ice_Forecast/SIPN_south/2020-21_Submission/'
            CryoIO.savebinaryfile(
                '{}001/SIPN2_SIC_001_{}.bin'.format(exportpath,
                                                    self.datestring),
                sicmapLow)
            CryoIO.savebinaryfile(
                '{}002/SIPN2_SIC_002_{}.bin'.format(exportpath,
                                                    self.datestring), sicmap)
            CryoIO.savebinaryfile(
                '{}003/SIPN2_SIC_003_{}.bin'.format(exportpath,
                                                    self.datestring),
                sicmapHigh)

            # =============================================================================
            # 			#SIC export for error analysis
            # 			CryoIO.savebinaryfile('analysis/predict/SIPN2_{}.bin'.format(self.datestring),sicmap)
            # =============================================================================

            self.CSVDatum.append('{}/{}/{}'.format(self.year, self.stringmonth,
                                                   self.stringday))
            print(self.year, self.yearday,
                  self.latitudelist[150][self.yearday])
            #			print(count)
            if count < countmax:
                self.advanceday(1)
    def prediction(self):
        ''' Starts the day loop'''
        filepath = 'X:/NSIDC/DataFiles/'
        filename = 'NSIDC_{}.bin'.format(self.datestring)
        countmax = self.index + self.daycount

        iceforecast = CryoIO.openfile(os.path.join(filepath, filename),
                                      np.uint8) / 250

        self.iceMean = np.array(self.iceLastDate, dtype=float)
        self.iceHigh = np.array(self.iceLastDate, dtype=float)
        self.iceLow = np.array(self.iceLastDate, dtype=float)

        for count in range(self.index, countmax, 1):
            filename = 'NSIDC_{}.bin'.format(self.datestring)
            filenameAvg = 'X:/NSIDC/DataFiles/Forecast_Manual/NSIDC_Mean_{}{}.bin'.format(
                self.stringmonth, self.stringday)
            filenameChange = 'X:/NSIDC/DataFiles/Forecast_SIC_change/NSIDC_SIC_Change_{}{}.bin'.format(
                self.stringmonth, self.stringday)
            filenameStdv = 'X:/NSIDC/DataFiles/Forecast_Stdv/NSIDC_Stdv_{}{}.bin'.format(
                self.stringmonth, self.stringday)
            filenameDrift_error = 'analysis/icedrift_correction/SIPN2_error_{}{}.bin'.format(
                self.stringmonth, self.stringday)

            #338ppm base value in 1980
            co2listindex = (self.year - 1980) * 12 + self.loopday.month - 1
            co2value = self.co2list[co2listindex][1]
            self.back_radiation = self.base_back_radiation - 2 * co2value / 338

            self.air_temp = (self.templist[count] - 273) * self.airtemp_mod

            self.bottommelt = self.base_bottommelt * self.meltmomentum / 180
            bottommelt = self.bottommelt * 1
            bottommeltHigh = self.bottommelt * 0.9
            bottommeltLow = self.bottommelt * 1.1

            driftcorrection = self.icedrift_sim * 1
            driftcorrectionLow = self.icedrift_sim * 0.9
            driftcorrectionHigh = self.icedrift_sim * 1.1

            icedrift_error = CryoIO.openfile(filenameDrift_error,
                                             np.float16) / 100
            icedrift_error = icedrift_error

            #fileformats: normal dtype:uint8 , filenameChange:int8 , filenameStdv: np.float16

            if count <= 224:  #change date of year to last available date
                iceforecast = CryoIO.openfile(os.path.join(filepath, filename),
                                              np.uint8) / 250

                if 220 <= count <= 224:
                    self.august_recalibrate(iceforecast)

                self.iceMean, sicmap, extent, area, calcvolume, alaska = self.meltcalc(
                    iceforecast, icedrift_error, self.iceMean, count,
                    bottommelt, driftcorrection)
                self.iceHigh, sicmapHigh, extentHigh, areaHigh, calcvolumeHigh, alaskaHigh = self.meltcalc(
                    iceforecast, icedrift_error, self.iceHigh, count,
                    bottommeltHigh, driftcorrectionHigh)
                self.iceLow, sicmapLow, extentLow, areaLow, calcvolumeLow, alaskaLow = self.meltcalc(
                    iceforecast, icedrift_error, self.iceLow, count,
                    bottommeltLow, driftcorrectionLow)

            else:
                #load statistical data
                icechange = CryoIO.openfile(filenameChange, np.int8) / 250
                iceAvg = CryoIO.openfile(filenameAvg, np.uint8) / 250
                iceStdv = CryoIO.openfile(filenameStdv, np.float16) / 250

                iceforecast = iceforecast + icechange
                iceforecastMean = (3 * iceforecast + iceAvg) / 4
                iceforecastHigh = np.array(iceforecastMean + iceStdv * 0.1)
                iceforecastLow = np.array(iceforecastMean - iceStdv * 0.3)

                iceforecastMean[iceforecastMean > 1] = 1
                iceforecastHigh[iceforecastHigh > 1] = 1
                iceforecastLow[iceforecastLow > 1] = 1
                iceforecastMean[iceforecastMean < 0] = 0
                iceforecastHigh[iceforecastHigh < 0] = 0
                iceforecastLow[iceforecastLow < 0] = 0

                self.iceMean, sicmap, extent, area, calcvolume, alaska = self.meltcalc(
                    iceforecastMean, icedrift_error, self.iceMean, count,
                    bottommelt, driftcorrection)
                self.iceHigh, sicmapHigh, extentHigh, areaHigh, calcvolumeHigh, alaskaHigh = self.meltcalc(
                    iceforecastHigh, icedrift_error, self.iceHigh, count,
                    bottommeltHigh, driftcorrectionHigh)
                self.iceLow, sicmapLow, extentLow, areaLow, calcvolumeLow, alaskaLow = self.meltcalc(
                    iceforecastLow, icedrift_error, self.iceLow, count,
                    bottommeltLow, driftcorrectionLow)

            self.CSVVolume.append(int(calcvolume))
            self.CSVExtent.append(int(extent) / 1e6)
            self.CSVArea.append(int(area) / 1e6)

            self.CSVVolumeHigh.append(int(calcvolumeHigh))
            self.CSVExtentHigh.append(int(extentHigh) / 1e6)
            self.CSVAreaHigh.append(int(areaHigh) / 1e6)

            self.CSVVolumeLow.append(int(calcvolumeLow))
            self.CSVExtentLow.append(int(extentLow) / 1e6)
            self.CSVAreaLow.append(int(areaLow) / 1e6)
            self.CSVAlaska.append((int(alaska) / 1e6))

            if count > (countmax - 82):
                #			visualize.thicknessshow(self.iceMean,int(calcvolume),int(extent),'Mean',self.datestring)
                visualize.concentrationshow(sicmap, int(area), int(extent),
                                            'Mean', self.datestring)
                visualize.fig2.savefig('Images/{}'.format(self.datestring))

# =============================================================================
# 			#save last date as arrary in mm
# 			if count == (countmax-15):
# #			if count >210:
# #				SIPN_analysis.thicknessshow(self.iceMean,int(calcvolume),int(extent),'Mean')
# 				SIPN_analysis.concentrationshow(sicmap,int(area),int(extent),'Mean')
#
# #				SIPN_analysis.thicknessshow(self.iceHigh,int(calcvolumeHigh),int(extentHigh),'High')
# 				SIPN_analysis.concentrationshow(sicmapHigh,int(areaHigh),int(extentHigh),'High')
#
# #				SIPN_analysis.thicknessshow(self.iceLow ,int(calcvolumeLow),int(extentLow),'Low')
# 				SIPN_analysis.concentrationshow(sicmapLow,int(areaLow),int(extentLow),'Low')
# =============================================================================

# =============================================================================
# 				# convert SIT into millimeter
# 				iceLastDateMean = self.iceMean*1000
# 				iceLastDateMean = np.array(iceLastDateMean,dtype=np.uint16)
# 				iceLastDateHigh = self.iceHigh*1000
# 				iceLastDateHigh = np.array(iceLastDateHigh,dtype=np.uint16)
# 				iceLastDateLow = self.iceLow*1000
# 				iceLastDateLow = np.array(iceLastDateLow,dtype=np.uint16)
# =============================================================================

# =============================================================================
# 			# save SIT maps
# 			exportpath = 'X:/Sea_Ice_Forecast/Data_Dump/'
# 			CryoIO.savebinaryfile('{}001/SIPN2_Thickness_Mean_{}.bin'.format(exportpath,self.datestring),iceLastDateMean)
# 			CryoIO.savebinaryfile('{}002/SIPN2_Thickness_midHigh_{}.bin'.format(exportpath,self.datestring),iceLastDateHigh)
# 			CryoIO.savebinaryfile('{}003/SIPN2_Thickness_midLow_{}.bin'.format(exportpath,self.datestring),iceLastDateLow)
# =============================================================================

# save SIC maps
            exportpath = 'X:/Sea_Ice_Forecast/SIPN_north/'
            CryoIO.savebinaryfile(
                '{}001/SIPN2_SIC_001_{}.bin'.format(exportpath,
                                                    self.datestring),
                sicmapLow)
            CryoIO.savebinaryfile(
                '{}002/SIPN2_SIC_002_{}.bin'.format(exportpath,
                                                    self.datestring), sicmap)
            CryoIO.savebinaryfile(
                '{}003/SIPN2_SIC_003_{}.bin'.format(exportpath,
                                                    self.datestring),
                sicmapHigh)

            self.CSVDatum.append('{}/{}/{}'.format(self.year, self.stringmonth,
                                                   self.stringday))
            print(self.year, count)
            #			print(self.meltmomentum)

            # =============================================================================
            # 			# optional image export
            # 			if count == (countmax-1):
            # #				SIPN_analysis.thicknessshow(self.iceMean,int(calcvolume),int(extent),'Mean')
            # 				SIPN_analysis.concentrationshow(sicmap,int(area),int(extent),'Mean')
            # #				SIPN_analysis.fig.savefig('X:/Sea_Ice_Forecast/Data_Dump/SIPN_{}.png'.format(self.datestring))
            # 				SIPN_analysis.fig2.savefig('X:/Sea_Ice_Forecast/Data_Dump/SIPN_SIC_{}.png'.format(self.datestring))
            # #				SIPN_analysis.ax.clear()
            # 				SIPN_analysis.ax2.clear()
            # =============================================================================

            # model value adjustment over time
            if count < countmax:
                self.advanceday(1)
                self.icedrift_sim = 6 + count / 150
                if count < 245:
                    self.meltmomentum += 1.5
                elif 245 <= count <= 250:
                    self.meltmomentum -= 22
                elif 252 <= count <= 278:
                    self.meltmomentum -= 12

                if count == 182:
                    self.airtemp_mod = 0.25
                elif count == 270:
                    self.airtemp_mod = 1.11
                elif count == 280:
                    self.airtemp_mod = 1.33
Example #17
0
    def prediction(self):
        ''' Starts the day loop'''
        filepath = 'X:/NSIDC/DataFiles/'
        filename = 'NSIDC_{}.bin'.format(self.datestring)
        countmax = self.index + self.daycount

        iceforecast = CryoIO.openfile(os.path.join(filepath, filename),
                                      np.uint8) / 250
        # 		icedrift_error = np.zeros(len(self.regmaskf))

        self.iceMean = np.array(self.iceLastDate, dtype=float)

        for count in range(self.index, countmax, 1):
            filename = 'NSIDC_{}.bin'.format(self.datestring)
            filenameAvg = 'X:/NSIDC/DataFiles/Forecast_Mean/NSIDC_Mean_{}{}.bin'.format(
                self.stringmonth, self.stringday)
            filenameChange = 'X:/NSIDC/DataFiles/Forecast_SIC_change/NSIDC_SIC_Change_{}{}.bin'.format(
                self.stringmonth, self.stringday)
            filenameDrift_error = 'analysis/icedrift_correction/SIPN2_error_{}{}.bin'.format(
                self.stringmonth, self.stringday)

            #338ppm base value in 1980
            co2listindex = (self.year - 1980) * 12 + self.loopday.month - 1
            co2value = self.co2list[co2listindex][1]
            self.back_radiation = self.base_back_radiation - 2 * co2value / 338

            self.air_temp = (self.templist[count] - 273) * self.airtemp_mod

            self.bottommelt = self.base_bottommelt * self.meltmomentum / 180
            bottommelt = self.bottommelt
            self.MJ_adjust = bottommelt - self.back_radiation + self.air_temp

            icedrift_error = CryoIO.openfile(filenameDrift_error,
                                             np.float16) / 100
            icedrift_error = icedrift_error

            #fileformats: normal dtype:uint8 , filenameChange:int8 , filenameStdv: np.float16

            if count <= 161:  #change date of year to last available date, 161==10th June
                iceforecast = CryoIO.openfile(os.path.join(filepath, filename),
                                              np.uint8) / 250

                self.iceMean, sicmap, extent, area, calcvolume = self.meltcalc(
                    iceforecast, icedrift_error, self.iceMean, count)

            else:
                #load statistical data
                icechange = CryoIO.openfile(filenameChange, np.int8) / 250
                iceAvg = CryoIO.openfile(filenameAvg, np.uint8) / 250

                iceforecast = iceforecast + icechange
                iceforecastMean = (3 * iceforecast + iceAvg) / 4

                self.iceMean, sicmap, extent, area, calcvolume = self.meltcalc(
                    iceforecastMean, icedrift_error, self.iceMean, count)

            self.CSVVolume.append(int(calcvolume))
            self.CSVExtent.append(int(extent) / 1e6)
            self.CSVArea.append(int(area) / 1e6)

            #SIC export for error analysis
            CryoIO.savebinaryfile(
                'analysis/predict/SIPN2_{}.bin'.format(self.datestring),
                sicmap)

            self.CSVDatum.append('{}/{}/{}'.format(self.year, self.stringmonth,
                                                   self.stringday))
            print(self.year, count)

            # model value adjustment over time
            if count < countmax:
                self.advanceday(1)
                self.icedrift_sim = 6 + count / 150
                if count < 245:
                    self.meltmomentum += 1.5
                elif 245 <= count <= 250:
                    self.meltmomentum -= 22
                elif 252 <= count <= 278:
                    self.meltmomentum -= 12

                if count == 182:
                    self.airtemp_mod = 0.25
                elif count == 270:
                    self.airtemp_mod = 1.1
                elif count == 280:
                    self.airtemp_mod = 1.25
    def prediction(self):
        ''' Starts the day loop'''
        filepath = 'X:/NSIDC_South/DataFiles/'
        filename = 'NSIDC_{}{}{}_south.bin'.format(self.year, self.stringmonth,
                                                   self.stringday)
        countmax = self.index + self.daycount

        iceforecast = CryoIO.openfile(os.path.join(filepath, filename),
                                      np.uint8) / 250
        icedrift_error = np.zeros(len(self.regmaskf))

        self.iceMean = np.array(self.iceLastDate, dtype=float)

        for count in range(self.index, countmax, 1):
            filename = 'NSIDC_{}_south.bin'.format(self.datestring)
            filenameAvg = 'Mean_00_19/NSIDC_Mean_{}{}_south.bin'.format(
                self.stringmonth, self.stringday)
            filenameChange = 'Daily_change/NSIDC_SIC_Change_{}{}_south.bin'.format(
                self.stringmonth, self.stringday)
            filenameDrift_error = 'analysis/icedrift_correction/SIPN2_error_{}{}.bin'.format(
                self.stringmonth, self.stringday)

            #338ppm base value in 1980
            co2listindex = (self.year - 1980) * 12 + self.loopday.month - 1
            co2value = self.co2list[co2listindex][1]
            self.back_radiation = self.base_back_radiation - 2 * co2value / 338

            self.bottommelt = self.base_bottommelt
            bottommelt = self.bottommelt

            driftcorrection = self.icedrift_sim

            icedrift_error = CryoIO.openfile(filenameDrift_error,
                                             np.float16) / 100
            icedrift_error = icedrift_error

            #fileformats: normal dtype:uint8 , filenameChange:int8 , filenameStdv: np.float16
            if count <= 161:  #change date of year to last available date
                iceforecast = CryoIO.openfile(os.path.join(filepath, filename),
                                              np.uint8) / 250

                self.iceMean, sicmap, extent, area, calcvolume = self.meltcalc(
                    iceforecast, icedrift_error, self.iceMean, bottommelt,
                    driftcorrection)

            else:
                icechange = CryoIO.openfile(
                    os.path.join(filepath, filenameChange), np.int8) / 250
                iceAvg = CryoIO.openfile(os.path.join(filepath, filenameAvg),
                                         np.uint8) / 250

                iceforecast = iceforecast + icechange
                np.clip(iceforecast, 0, 1)
                iceforecastMean = (2 * iceforecast + iceAvg) / 3

                iceforecastMean[iceforecastMean > 1] = 1
                iceforecastMean[iceforecastMean < 0] = 0

                self.iceMean, sicmap, extent, area, calcvolume = self.meltcalc(
                    iceforecastMean, icedrift_error, self.iceMean, bottommelt,
                    driftcorrection)

            self.CSVVolume.append(int(calcvolume))
            self.CSVExtent.append(round(int((extent)) / 1e6, 4))
            self.CSVArea.append(round(int((area)) / 1e6, 4))

            #SIC export for error analysis
            CryoIO.savebinaryfile(
                'analysis/predict/SIPN2_{}.bin'.format(self.datestring),
                sicmap)

            self.CSVDatum.append('{}/{}/{}'.format(self.year, self.stringmonth,
                                                   self.stringday))
            print(self.year, self.yearday,
                  self.latitudelist[150][self.yearday])
            #			print(count)
            if count < countmax:
                self.advanceday(1)
Example #19
0
    for year in range(2005, 2021):
        datalist.append([year, thickness])
        x += 1

    p = Pool(processes=20)
    data = p.map(spawnprocess, datalist)
    print(len(data))
    p.close()

    area = []
    extent = []
    for x in data:
        area.append(x[0])
        extent.append(x[1])

    CryoIO.csv_columnexport('area.csv', area)
    CryoIO.csv_columnexport('extent.csv', extent)

# =============================================================================
# visualize = SIPN_analysis.NSIDC_analysis()
# #visualize.thickmap_create()
# visualize.conmap_create()
# =============================================================================
'''
Values are coded as follows:
0-250 ice concentration
251 pole hole
252 unused
253 coastline
254 landmask
255 NA
Example #20
0
 def csvexport_by_forecasttype(self):
     ''' Exporting values '''
     exportpath = 'X:/Sea_Ice_Forecast/SIPN_north/'
     CryoIO.csv_columnexport(
         '{}_SIPN_forecast_002_{}.csv'.format(exportpath, self.year),
         [self.CSVDatum, self.CSVVolume, self.CSVArea, self.CSVExtent])