Example #1
0
    def concatenate_piControl(self, season=None, compressed=False):
        experiment = "piControl"
        fnames = sorted(
            get_ensemble_filenames(self.variable, self.region, experiment))
        #models=sorted(self.ensemble_dict.keys())
        models = get_ok_models(self.region)

        nmod = len(models)
        ntimes = []
        model_names = []
        #Loop over without loading data to figure out the shortest length control run
        for model in models:
            # print(model)
            I = np.where([x.split(".")[2] == model for x in fnames])[0]
            if len(I) > 0:
                first_member = int(I[0])

                fname = fnames[first_member]

                model_names += [fname]
                f = cdms.open(fname)
                ntimes += [int(f[self.variable].shape[0])]
                f.close()
        L = np.min(ntimes)
        #Set the time axis to be the time axis of the shortest control rin
        imin = np.argmin(ntimes)

        fshortest = model_names[imin]
        f = cdms.open(fshortest)
        tax = f(self.variable).getTime()
        tax.id = 'time'
        tax.designateTime()
        f.close()
        #Load data
        #SingleMember=np.ma.zeros((len(model_names),L))+1.e20
        SingleMember = np.ma.zeros((nmod, L)) + 1.e20
        i = 0
        for model in models:
            I = np.where([x.split(".")[2] == model for x in fnames])[0]
            if len(I) > 0:
                first_member = I[0]
                fname = fnames[first_member]
                f = cdms.open(fname)
                vdata = f(self.variable)

                SingleMember[i] = vdata[:L]
                i += 1
            else:
                if self.verbose:
                    print("No piControl data for " + model + " " +
                          self.variable)

            f.close()

        #Historical units are already converted; need to convert piControl from
        #kg m-2 s-1 to mm day-1
        #if self.variable in ["pr","evspsbl","prsn","mrros","mrro"]:
        #   SingleMember = SingleMember*86400.
        SingleMember = MV.masked_where(
            np.abs(SingleMember) > 1.e10, SingleMember)
        SingleMember = MV.array(SingleMember)
        SingleMember.setAxis(1, tax)

        SingleMember.setAxis(0, cmip5.make_model_axis(models))
        ###KLUDGE: FIRST YEAR IS ZERO- FIX THIS IN DOWNLOADER
        SingleMember = MV.masked_where(SingleMember == 0, SingleMember)
        # if self.variable in ["mrsos","mrso"]:
        #     if not raw:
        #         SingleMember=self.standardize_zscore(SingleMember)
        # else:
        #     if not raw:
        #         SingleMember=self.convert_to_percentage(SingleMember)
        if season is None:
            return SingleMember
        cdutil.setTimeBoundsMonthly(SingleMember)
        seasonal = getattr(cdutil, season).departures(SingleMember)

        return DA_tools.concatenate_this(seasonal, compressed=compressed)
Example #2
0
    def __init__(self, experiment):
        self.experiment = experiment
        f = cdms.open("DATA/cmip5.sahel_precip." + experiment + ".nc")
        west = f("pr_W")
        east = f("pr_CE")

        self.data = {}
        self.data["west"] = west
        self.data["east"] = east

        west_a = cdutil.ANNUALCYCLE.departures(west)
        east_a = cdutil.ANNUALCYCLE.departures(east)

        if experiment != "piControl":
            nmod, nmon = west_a.shape
            west_rs = west_a.reshape((nmod, nmon / 12, 12))
            west_rs.setAxis(0, west.getAxis(0))
            tax = cdms.createAxis(west.getTime()[6::12])
            tax.id = 'time'
            tax.designateTime()
            tax.units = west.getTime().units
            west_rs.setAxis(1, tax)

            westsolver = Eof(MV.average(west_rs, axis=0))
        else:
            west_a = da.concatenate_this(west_a, compressed=True)
            nmon, = west_a.shape
            tax = cdms.createAxis(np.arange(west_a.shape[0]))
            tax.units = 'months since 0001-1-15'
            tax.id = 'time'
            tax.designateTime()
            taxC = tax.asComponentTime()
            test = [x.torel('days since 0001-1-15').value for x in taxC]
            tax_days = cdms.createAxis(test)
            tax_days.designateTime()
            tax_days.id = 'time'
            tax_days.units = 'days since 0001-1-15'
            west_a.setAxis(0, tax_days)
            taxmonthly = cdms.createAxis(west_a.getTime()[6::12])
            taxmonthly.units = west_a.getTime().units
            taxmonthly.designateTime()
            taxmonthly.id = 'time'
            west_rs = west_a.reshape((nmon / 12, 12))
            west_rs.setAxis(0, taxmonthly)
            westsolver = Eof(west_rs)

        if experiment != "piControl":
            nmod, nmon = east_a.shape
            east_rs = east_a.reshape((nmod, nmon / 12, 12))
            east_rs.setAxis(0, east.getAxis(0))
            east_rs.setAxis(1, tax)

            eastsolver = Eof(MV.average(east_rs, axis=0))
        else:
            east_a = da.concatenate_this(east_a, compressed=True)
            east_a.setAxis(0, tax_days)
            nmon, = east_a.shape
            east_rs = east_a.reshape((nmon / 12, 12))
            east_rs.setAxis(0, taxmonthly)
            eastsolver = Eof(east_rs)

        facwest = da.get_orientation(westsolver)
        faceast = da.get_orientation(eastsolver)

        self.solvers = {}
        self.solvers["east"] = eastsolver
        self.solvers["west"] = westsolver

        self.reshaped = {}
        self.reshaped["east"] = east_rs
        self.reshaped["west"] = west_rs

        if len(self.reshaped["west"].shape) > 2:

            data = [
                MV.average(cmip5.ensemble2multimodel(self.reshaped["west"]),
                           axis=0),
                MV.average(cmip5.ensemble2multimodel(self.reshaped["east"]),
                           axis=0)
            ]
        else:
            data = [self.reshaped["west"], self.reshaped["east"]]
        msolver = MultivariateEof(data)
        self.solvers["multi"] = msolver
        self.anomalies = {}
        self.anomalies["east"] = east_a
        self.anomalies["west"] = west_a