def __init__(self, frame): self.model = dm.DataModel() self.frame = frame self.buttons = list() self.spacing = 15 self.declareButtons() self.popUp = list()
def reset_data(self): self.data_model = DataModel.DataModel() self.data_model.logger = Logger self.img = None self.texture = None self.texture_stars = None self.focal_length = 0 self.crop_factor = 0 self.img_list = None self.output_name = "aligned.tif" gc.collect()
def __init__(self): ## Configuration self.settings = configparser.ConfigParser() self.settings['settings'] = {} self.settings['hardware'] = { 'type': 'none' } self.settings['view'] = { 'startFreq': '1000000', 'stopFreq': '10000000', 'showMarker': 'True', 'colorScheme': '1', 'colorScheme': '1', 'dBDivIndex': '4', 'numSamplesIndex': '2', 'refLevel': '10' } self.model = DataModel.DataModel()
def __init__(self): super(RaspberryController, self).__init__() self.instance = None self.setupUi(self) self.setup_actions() self.setup_openmic_controller() self.data_model = DataModel.DataModel(self.agentsComboBox, self.tasksComboBox, self.showTaskAgentsComboBox) self.initialize_ui() self.show()
def __init__( self, n=100000, border_value=1.5, input_parameters_below_border=(1,), input_parameters_above_border=(0.5,), output_parameters_below_border=(0.5,), output_parameters_above_border=(1,), input_intensity=(0.5,), output_intensity=(1,), input_distribution="exponential", output_distribution="exponential", input_time_distribution="exponential", output_time_distribution="exponential", ): # distribution law of volumes of receipt of the resource self._input_distribution = input_distribution # distribution law of volumes of resource loss self._output_distribution = output_distribution # distribution law of lengths of time intervals self._input_time_distribution = input_time_distribution self._output_time_distribution = output_time_distribution # parameters of distribution law of volumes of receipt of the resource (below and above S-border) self._input_parameters_below_border = input_parameters_below_border self._input_parameters_above_border = input_parameters_above_border # parameters of distribution law of volumes of resource loss (below and above S-border) self._output_parameters_below_border = output_parameters_below_border self._output_parameters_above_border = output_parameters_above_border # parameters of distribution law of lengths of time intervals self._input_intensity = input_intensity self._output_intensity = output_intensity # number of iterations self._n = n self._border_value = border_value self._data = DataModel.DataModel(n)
parser.add_argument('-f', '--focalLength', dest='focal', type=float, default=16.5, help='Focal length (default: 16.5)') args = parser.parse_args() if args.debug: logging_level = logging.DEBUG logging_format = "%(asctime)s (%(name)s) [%(levelname)s] line %(lineno)d: %(message)s" logging.basicConfig(format=logging_format, level=logging_level) keepInterim = args.keepInterim data_model = DataModel.DataModel() outputName = args.output for p in reorder_images(args.images): logging.debug("image: %s", p) data_model.add_image(p) ref_img = data_model.images[0] f = args.focal logging.debug("Setting focal length to %f", f) img_shape = ref_img.fullsize_gray_image.shape img_size = np.array([img_shape[1], img_shape[0]]) data_model.reset_result() pts, vol = DataModel.ImageProcessing.detect_star_points(
gender_records = data_model.sort_by_gender() return gender_records.to_json(orient='records', force_ascii=False) @app.route("/records/birthdate", methods=["GET"]) def get_bday_records(): bday_records = data_model.sort_by_birthdate() return bday_records.to_json(orient='records', force_ascii=False) @app.route("/records/name", methods=["GET"]) def get_name_records(): name_records = data_model.sort_by_name() return name_records.to_json(orient='records', force_ascii=False) @app.route("/records", methods=["POST"]) def add_record(): line = request.get_data() if data_model.add_line_to_record(line): return data_model.records.to_json(orient='records', force_ascii=False) else: return "Invalid Format" if __name__ == '__main__': input_path_list = CLI().prompt() data_model = dm.DataModel(input_path_list) print(data_model.records) app.run(port=8080)
def the_great_looper(key_list, stock_names_list, kws_list): start_timing = datetime.now() print(f'Start time: {start_timing}') # create a number of datamodels first # the kw lists # create some table to store the data after run # and then save it somewhere after run result = pd.DataFrame() experiment_number = 1 iterations = 20 number_of_data_models = len(key_list) total_experiment_count = iterations * number_of_data_models for key, stock_name, kws in zip(key_list, stock_names_list, kws_list): # form the data model m = DataModel.DataModel( f'{key}_False_by_week.csv', # the trend file f'{stock_name}.csv', # the stock file 'close_open', 'somefilenamehere') # let's loop around the weeks to predict....also, but later # loop around number of epochs and learning rate, but later m.form_X_y(weeks_to_predict=8, scaled=False, div_100=True, flatten=False) for _ in range(iterations): print( f'running experiment {experiment_number} / {total_experiment_count}' ) train_loader, val_loader = pyTorchModel.get_train_and_test_data_loader_from_data_model( m, percentage_in_train_set=0.7) lr = 0.001 n_epochs = 600 kernel_size = 3 trained_model, train_losses, val_losses = pyTorchModel.train_kit( train_loader, val_loader, number_of_kws=len(m.keywords), kernel_size=kernel_size, pool_size=1, weeks_to_predict=m.weeks_to_predict, lr=lr, n_epochs=n_epochs) # the train_kit should return the model and train losses and val losses total_accuracy, one_zero_accuracy, zero_one_accuracy = pyTorchModel.eval_kit( val_loader, trained_model) print( f'avg train losses is {sum(train_losses) / len(train_losses)}') print(f'avg val losses is {sum(val_losses) / len(val_losses)}') # document the result # result_cols = ['key', 'kws', 'weeks_to_predict', 'train_loss', 'val_loss', 'lr', 'n_epochs', # 'total_accuracy', 'one_zero_accuracy', 'zero_one_accuracy'], result.loc[experiment_number, 'key'] = key result.loc[experiment_number, 'kws'] = kws result.loc[experiment_number, 'weeks_to_predict'] = m.weeks_to_predict result.loc[experiment_number, 'train_loss'] = float( sum(train_losses) / len(train_losses)) result.loc[experiment_number, 'val_loss'] = float(sum(val_losses) / len(val_losses)) result.loc[experiment_number, 'lr'] = lr result.loc[experiment_number, 'n_epochs'] = n_epochs result.loc[experiment_number, 'total_accuracy'] = total_accuracy result.loc[experiment_number, 'one_zero_accuracy'] = one_zero_accuracy result.loc[experiment_number, 'zero_one_accuracy'] = zero_one_accuracy result.loc[experiment_number, 'kernel_size'] = kernel_size # result.loc[experiment_number, 'key'] = key # result.loc[experiment_number, 'key'] = key experiment_number += 1 result.to_csv( os.path.join(general_path(), 'result7_only_bio_meaningful.csv')) end_timing = datetime.now() print(f'time taken: {end_timing - start_timing}') return result