def max_spacing_k_clustering_big(graph_set):
    disjoint_set = DisjointSet.DisjointSet()

    # Create sets
    for node in list(graph_set):
        disjoint_set.makeSet(DisjointSet.Node(node))

    # Merge distance 1 nodes
    for node in list(graph_set):
        candidates = hamming_distance_1_candidates(node)
        matches = candidates & graph_set
        for match in list(matches):
            n1 = disjoint_set.nodes[match]
            n2 = disjoint_set.nodes[node]
            disjoint_set.union(n1, n2)

    # Merge distance 2 nodes
    for node in list(graph_set):
        candidates = hamming_distance_2_candidates(node)
        matches = candidates & graph_set
        for match in list(matches):
            n1 = disjoint_set.nodes[match]
            n2 = disjoint_set.nodes[node]
            disjoint_set.union(n1, n2)
    return disjoint_set.connected_components
 def solution(self, root, queries):
     self.queries = {}
     self.tree = self.bfs(root)
     for idx, query in enumerate(queries):
         if query[0] not in self.queries:
             self.queries[ query[0] ] = []
         if query[1] not in self.queries:
             self.queries[ query[1] ] = []
         self.queries[query[0]].append( (idx,query[1]) )
         self.queries[query[1]].append( (idx,query[0]) )
     self.result = { }
     self.dset = DisjointSet()
     self.lca(root)
     return self.result.values()
Example #3
0
    def solution(self, G):
        edges = []
        for node in G.V.values():
            for next, weight in node.neighbors:
                if next.x > node.x:
                    edge = [node.x, next.x, weight]
                else:
                    edge = [next.x, node.x, weight]
                edges.append(edge)
        edges = sorted(edges,
                       cmp=lambda x, y: (x[0] - y[0]) * 100 +
                       (x[1] - y[1]) * 10 + int(x[2] - y[2]))
        cleared = [edges[0]]
        prev = edges[0]
        for edge in edges:
            if prev == edge:
                continue
            else:
                prev = edge
                cleared.append(edge)

        dset = DisjointSet()
        for node in G.V.values():
            dset.makeset(node.x)

        edges = sorted(cleared, key=lambda x: x[2])
        tree = []
        for edge in edges:
            u, v, weight = edge
            if not dset.findset(u).equals(dset.findset(v)):
                dset.union(u, v)
                tree.append(edge)
        return tree
Example #4
0
    def __accessVehicles(self):
        DJSet = DisjointSet.DisjointSet()
        vehicleThreshold = self.__getMinDistance() * 5
        for i in range(self.centers.size // 2):
            for j in range(self.centers.size // 2):
                if i == j:
                    continue
                diff = self.centers[j] - self.centers[i]
                if (diff[0]**2 + diff[1]**2)**0.5 < vehicleThreshold:
                    DJSet.add(tuple(self.centers[i]), tuple(self.centers[j]))
        for leader in DJSet.group:
            if len(DJSet.group[leader]) < 5:
                continue
            frame = np.array([leader[0], leader[1], leader[0], leader[1]])

            for member in DJSet.group[leader]:
                if member[0] < frame[0]:
                    frame[0] = member[0]
                elif member[0] > frame[2]:
                    frame[2] = member[0]
                if member[1] < frame[1]:
                    frame[1] = member[1]
                elif member[1] > frame[3]:
                    frame[3] = member[1]
            if frame[3] - frame[1] == 0 or frame[2] - frame[0] == 0:
                continue
            else:
                self.bufferVehicles.append(frame)
Example #5
0
def gen_large_set_data(max_set_size=5, rows=8, cols=10):
    """Generate boards with larger tile sets that will score higher.

	Arguments:
		max_set_size (int): The maximum size of neighboring disjoint sets. If
		                    the max size changes randomly (and favors lower
		                    set sizes), the board will be more realistic.
		rows (int): The number of rows on the SuperBall board.
		cols (int): The number of cols on the SuperBall board.

	Returns:
		np.chararray: An array representing the different tile values.
	"""

    board = np.chararray((80), unicode=True)
    djSet = dj.DisjointSet(rows * cols)

    # Determine possible places for unions of sets randomly
    set_divisions = set()
    for r in range(rows - 1):
        for c in range(cols):
            cell_index = r * cols + c
            coin_flip = np.random.binomial(1, 0.5, 1)[0]
            if (coin_flip == 1):
                set_divisions.add(cell_index)
    for r in range(rows):
        for c in range(cols - 1):
            cell_index = (r * cols + c) + (rows * cols)
            coin_flip = np.random.binomial(1, 0.5, 1)[0]
            if (coin_flip == 1):
                set_divisions.add(cell_index)

    # Union the sets if both neighbors are less than max_set_size
    # TODO --> Change max_set_size randomly to get more realistic boards
    # TODO --> Probably favor lower set sizes with max_set_size
    for s in set_divisions:
        if (s < rows * cols):
            size1 = djSet.getSetSize(s)
            size2 = djSet.getSetSize(s + cols)
            if (size1 < max_set_size and size2 < max_set_size):
                djSet.union(s, s + cols)
        else:
            size1 = djSet.getSetSize(s - rows * cols)
            size2 = djSet.getSetSize(s - rows * cols + 1)
            if (size1 < max_set_size and size2 < max_set_size):
                djSet.union(s - rows * cols, s - rows * cols + 1)

    # Choose a color for each disjoint set and fill in board
    set_colors = {}
    for r in range(rows):
        for c in range(cols):
            index = r * cols + c
            setID = djSet.getSetID(index)
            if setID not in set_colors:
                tile_index = np.random.randint(len(tiles))
                set_colors[setID] = tiles[tile_index]
            board[index] = set_colors[setID]

    return board
Example #6
0
def max_spacing_k_clustering(graph, k):
    disjoint_set = DisjointSet.DisjointSet()

    # Create sets
    for edge in graph:
        disjoint_set.makeSet(DisjointSet.Node(edge[1]))
        disjoint_set.makeSet(DisjointSet.Node(edge[2]))

    # Union until there's k sets
    for edge in graph:
        distance = edge[0]
        n1 = disjoint_set.nodes[edge[1]]
        n2 = disjoint_set.nodes[edge[2]]
        disjoint_set.union(n1, n2)
        if disjoint_set.connected_components == k - 1:
            break
    return distance
Example #7
0
    def solution(self, G):
        edges = []
        for node in G.V.values():
            for next,weight in node.neighbors:
                if next.x > node.x:
                    edge = [node.x, next.x, weight]
                else:
                    edge = [next.x, node.x, weight]
                edges.append(edge)
        edges = sorted(edges, cmp = lambda x,y : (x[0] - y[0]) * 100 + (x[1]-y[1])*10 + int(x[2] - y[2]))
        cleared = [edges[0]]
        prev = edges[0]
        for edge in edges:
            if prev == edge:
                continue
            else:
                prev = edge
                cleared.append(edge)

        dset = DisjointSet()
        for node in G.V.values():
            dset.makeset(node.x)

        edges = sorted(cleared, key= lambda x:x[2])
        tree = []
        for edge in edges:
            u, v, weight = edge
            if not dset.findset(u).equals( dset.findset(v) ):
                dset.union(u,v)
                tree.append( edge )
        return tree
Example #8
0
    def get_mst_kruskal(self):
        disjoint_set = DisjointSet.DisjointSet(self.vertices)

        # sort edges by weight
        sorted_edges = sorted(graph.edges,
                              key = lambda edge: self.edges[edge])

        mst_edges = []
        
        for edge in sorted_edges:
            if disjoint_set.unify(edge[0], edge[1]):
                mst_edges.append(edge)

        return mst_edges
 def kruskalAlgo(self):
     i, e = 0, 0
     ds = dst.DisjointSet(self.nodes)
     self.graph = sorted(self.graph, key=lambda item: item[2])
     while e < self.V - 1:
         s, d, w = self.graph[i]
         i += 1
         x = ds.find(s)
         y = ds.find(d)
         if x != y:
             e += 1
             self.MST.append([s, d, w])
             ds.union(x, y)
     self.printSol(s, d, w)
Example #10
0
def kruskals(edges):
    edges.sort(key=lambda x: x[2])  # sort according to weight
    vertices = set()
    for e in edges:
        vertices.add(e[0])
        vertices.add(e[1])
    res, total_length = [], 0
    # creating a disjoint set of all vertices
    dj = DS.DisjointSet(list(vertices))
    for e in edges:
        if dj.union(e[0], e[1]):
            res.append((e[0], e[1]))
            total_length += e[2]
    return res, total_length
Example #11
0
def FindNegativeCircle(G):
    '''
    有向图G
    返回一个负圈
    '''
    V = G.V
    E = G.Adjlist
    #---------------------------------------------
    #采用寻找圈方法
    Ds = DisjointSet(V)
    for u in E.keys():
        curList = E[u]
        curNode = curList.head
        while curNode!=0:
            v = curNode.data
            parentU = Ds.find(u)
            parentV = Ds.find(v)
            if parentU == parentV:
                #生成环,找v->u的所有路径的权重
                findPath(v,u,V,E,curNode.weight)
            else:
                #在不同的树中,这条边不会产生环
                Ds.union(parentU,parentV)
            curNode = curNode.next
Example #12
0
def spanning_tree(nodes, edges, randstream):
    """Given a list of edges, calculate a minimal spanning tree out of them."""
    num_nodes = len(nodes)
    tree = []
    partitions = DisjointSet()
    for i in range(num_nodes):
        # create a disjoint set where each node is a singleton partition
        partitions.add(i)
    for edge in edges:
        a, b = edge
        if partitions.find(a) != partitions.find(b):
            # partitions were unconnected: bridge them together
            tree.append(edge)
            partitions.union(a, b)
        if len(tree) == num_nodes - 1:
            # minimal spanning tree acquired
            break
    return tree
Example #13
0
class C21_3_OfflineLCA(BaseSolution):
    def __init__(self):
        BaseSolution.__init__(self)
        self.push_test(
            params = (TreeNode.deserialize("{1,2,3,4,5,6,7}"), [[5,4],[4,6], [5,3],[4,2]],),
            expects = [2,1,1,2]
        )
        self.push_test(
            params = (TreeNode.deserialize("{1,2,3,4,5,6,7,#,#,8,9,#,#,10,#,#,11,12,#,13,14}"), [[1,4],[2,3],[5,6],[11,12],[12,7],[6,14]],),
            expects = [1,1,1,5,1,3]
        )

    def solution(self, root, queries):
        self.queries = {}
        self.tree = self.bfs(root)
        for idx, query in enumerate(queries):
            if query[0] not in self.queries:
                self.queries[ query[0] ] = []
            if query[1] not in self.queries:
                self.queries[ query[1] ] = []
            self.queries[query[0]].append( (idx,query[1]) )
            self.queries[query[1]].append( (idx,query[0]) )
        self.result = { }
        self.dset = DisjointSet()
        self.lca(root)
        return self.result.values()
    def bfs(self,root):
        tree = {}
        queue = [root]
        while len(queue) > 0:
            top = queue.pop(0)
            if not top: continue
            tree[top.val] = top
            if top.left: queue.append(top.left)
            if top.right: queue.append(top.right)

        return tree
    def lca(self,root):
        u = self.dset.makeset( root.val )
        self.dset.findset(root.val).ancestor = u
        for node in (root.left, root.right):
            if not node: continue
            self.lca(node)
            self.dset.union( root.val, node.val)
            self.dset.findset(root.val).ancestor = u
        root.state = 2
        if root.val in self.queries:
            for idx,other in self.queries[ root.val ]:
                if self.tree[other].state == 2:
                    self.result[idx] = self.dset.findset( other ).ancestor.val
def spanning_tree(nodes, edges, randstream):
	"""Given a list of edges, calculate a minimal spanning tree out of them."""
	num_nodes = len(nodes)
	tree = []
	partitions = DisjointSet()
	for i in range(num_nodes):
		# create a disjoint set where each node is a singleton partition
		partitions.add(i)
	for edge in edges:
		a, b = edge
		if partitions.find(a) != partitions.find(b):
			# partitions were unconnected: bridge them together
			tree.append(edge)
			partitions.union(a, b)
		if len(tree) == num_nodes-1:
			# minimal spanning tree acquired
			break
	return tree
Example #15
0
    def getDJSet(self):
        djSet = DisjointSet.DisjointSet(self.numTiles)

        # union vertically
        for r in range(1, self.numRows):
            for c in range(0, self.numCols):
                index = r * self.numCols + c
                upIndex = (r - 1) * self.numCols + c
                if (self.board[index] == self.board[upIndex]):
                    djSet.union(index, upIndex)

        # union horizontally
        for c in range(1, self.numCols):
            for r in range(0, self.numRows):
                index = r * self.numCols + c
                leftIndex = index - 1
                if (self.board[index] == self.board[leftIndex]):
                    djSet.union(index, leftIndex)

        return djSet
Example #16
0
def single_linkage_union(tree,threshold,support):
    leaves = prep(tree,support)
    clusters = list()

    # find closest leaf below (dist,leaf)
    for node in tree.traverse_postorder():
        if node.is_leaf():
            node.min_below = (0,node.label)
        else:
            node.min_below = min((c.min_below[0]+c.edge_length,c.min_below[1]) for c in node.children)

    # find closest leaf above (dist,leaf)
    for node in tree.traverse_preorder():
        node.min_above = (float('inf'),None)
        if node.is_root():
            continue
        # min distance through sibling
        for c in node.parent.children:
            if c != node:
                dist = node.edge_length + c.edge_length + c.min_below[0]
                if dist < node.min_above[0]:
                    node.min_above = (dist,c.min_below[1])
        # min distance through grandparent
        if not c.parent.is_root():
            dist = node.edge_length + node.parent.min_above[0]
            if dist < node.min_above[0]:
                node.min_above = (dist,node.parent.min_above[1])

    # set up Disjoint Set
    ds = DisjointSet(leaves)
    for node in tree.traverse_preorder(leaves=False):
        # children to min above
        for c in node.children:
            if c.min_below[0] + c.edge_length + node.min_above[0] <= threshold:
                ds.union(c.min_below[1], node.min_above[1])
        for i in range(len(node.children)-1):
            c1 = node.children[i]
            for j in range(i+1, len(node.children)):
                c2 = node.children[j]
                if c1.min_below[0] + c1.edge_length + c2.min_below[0] + c2.edge_length <= threshold:
                    ds.union(c1.min_below[1], c2.min_below[1])
    return [list(s) for s in ds.sets()]
Example #17
0
def main():
    ds = DisjointSet(1, 2, 3, 'a', 'b', 'c')
    print(ds)
    ds.connect(1, 'b')
    print(ds)
    ds.connect('b', 'c')
    print(ds)
    ds.connect(2, 3)
    ds.connect('a', 2)
    ds.connect('a', 'c')
    print(ds)
    print(ds.isConnected('c', 2))
Example #18
0
def analyze_board(board, goals=default_goals, nRows=8, nCols=10, mss=5):
    score_pos = (-1, -1)

    djSet = DisjointSet.DisjointSet(nRows * nCols)

    for row in range(1, nRows):
        for col in range(0, nCols):
            index = row * nCols + col
            up_index = (row - 1) * nCols + col
            if (board[index] == board[up_index]):
                setID1 = djSet.getSetID(index)
                setID2 = djSet.getSetID(up_index)
                if (setID1 != setID2):
                    djSet.union(index, up_index)

    for row in range(0, nRows):
        for col in range(1, nCols):
            index = row * nCols + col
            left_index = row * nCols + (col - 1)
            if (board[index] == board[left_index]):
                setID1 = djSet.getSetID(index)
                setID2 = djSet.getSetID(left_index)
                if (setID1 != setID2):
                    djSet.union(index, left_index)

    scoringSets = {}
    nearScoringSets = {}
    nonScoringSets = {}

    for row in range(0, nRows):
        for col in range(0, nCols):
            index = row * nCols + col
            s = {}
            s['setID'] = djSet.getSetID(index)
            s['size'] = djSet.getSetSize(index)
            s['color'] = board[index]
            s['rootRow'] = row
            s['rootCol'] = col

            # Goal cells
            if (goals[index] and s['size'] >= mss):
                scoringSets[s['setID']] = s
            elif (goals[index] and s['size'] >= 3):
                nearScoringSets[s['setID']] = s
            else:
                nonScoringSets[s['setID']] = s

    score = 0
    maxSize = 0
    numSets = 0
    numScorableTiles = 0
    scoringSetScore = 0
    nearScoringSetScore = 0
    nonScoringSetScore = 0
    adjacencyScore = 0
    positioningScore = 0

    for s in scoringSets:
        size = scoringSets[s]['size']
        rootRow = scoringSets[s]['rootRow']
        rootCol = scoringSets[s]['rootCol']
        scoringSetScore += pow(size, 2)

        numScorableTiles += size

        if (size > maxSize):
            maxSize = size
            score_pos = (rootRow, rootCol)

    for s in nearScoringSets:
        nearScoringSetScore += pow(nearScoringSets[s]['size'], 2)

    for s in nonScoringSets:
        nonScoringSetScore += pow(nonScoringSets[s]['size'], 2)

    # Ignore adjacency score and positioning score for now

    numSets = len(scoringSets)

    score = (numSets + numScorableTiles / 3) * 8000 \
        + (scoringSetScore * 1.3 + nearScoringSetScore * 1.3 + nonScoringSetScore * 1.1) * 100 \
        + (adjacencyScore * 20 + positioningScore) * 10

    return score, score_pos
Example #19
0
File: ds.py Project: florencioq/eda
from DisjointSet import *

print("Criando o conjunto com subconjuntos disjuntos")
myDS = DisjointSet()
print("Criando uns subconjuntos")
for i in range(5):
    myDS.makeset(i)
print("Printando os conjuntos")
myDS.print()
print("Unindo R conjuntos 1 e 2")
myDS.uniaoR(1, 2)
myDS.print()
print("Unindo R conjuntos 1 e 3")
myDS.uniaoR(1, 3)
myDS.print()
print("Unindo R conjuntos 0 e 1")
myDS.uniaoR(0, 1)
myDS.print()
print("Retornando o representante dos elementos")
for i in range(5):
    print(str(i) + "-->" + str(myDS.find(i)))
print("Verificando se 1 e 2 fazem parte do mesmo conjunto")
print(myDS.mesmo(1, 2))
print("Verificando se 1 e 4 fazem parte do mesmo conjunto")
print(myDS.mesmo(1, 4))
print("União E de 1 e 4")
myDS.print()
myDS.uniaoE(1, 4)
myDS.print()