Example #1
0
    def __init__(self, dtype=np.float32, reshape_torch=False):
        """
        Initializes a new LeNet inspired network
        Args:
            dtype: Datatype to be used
            reshape_torch: set this, if the training parameters came from Pytorch which requires a custom reshape
        """
        self.reshape_torch = reshape_torch
        r1 = EggNet.ReshapeLayer(newshape=[-1, 28, 28, 1])
        cn1 = EggNet.Conv2dLayer(in_channels=1, out_channels=16, kernel_size=3, activation='relu',
                                 dtype=np.float32)  # [? 28 28 16]
        mp1 = EggNet.MaxPool2dLayer(size=2)  # [? 14 14 16]
        cn2 = EggNet.Conv2dLayer(in_channels=16, out_channels=32, kernel_size=3, activation='relu')  # [? 14 14 32]
        mp2 = EggNet.MaxPool2dLayer(size=2)  # [?  7  7 32]
        r2 = EggNet.FlattenLayer()
        fc1 = EggNet.FullyConnectedLayer(input_size=32 * 7 * 7, output_size=32, activation='relu', dtype=np.float32)
        fc2 = EggNet.FullyConnectedLayer(input_size=32, output_size=10, activation='softmax')

        # Store a reference to each layer
        self.r1 = r1
        self.cn1 = cn1
        self.mp1 = mp1
        self.cn2 = cn2
        self.mp2 = mp2
        self.r2 = r2
        self.fc1 = fc1
        self.fc2 = fc2
        self.lenet_layers = [r1, cn1, mp1, cn2, mp2, r2, fc1, fc2]

        super(LeNet, self).__init__(self.lenet_layers)
Example #2
0
    def test_conv(self):
        cl = EggNet.Conv2dLayer(in_channels=1, out_channels=3, kernel_size=5)

        test_img = np.random.rand(4, 28, 28, 1)  # create 4 test images

        cl_out = cl.__call__(test_img)
        # Check Shape
        self.assertEqual(cl_out.shape, (4, 28, 28, 3))
Example #3
0
 def backprop(self, x, y_):
     y, zs = self.forward_intermediate(x)
     loss = EggNet.mean_squared_error(y, y_)
     delta = y - y_
     deltas = []
     for layer in self.layers:
         delta = layer.backprop(delta)
         deltas.append(delta)
         layer.update_weights(delta)
Example #4
0
def init_network_from_weights(qweights, from_torch):
    our_net = EggNet.LeNet(reshape_torch=from_torch)
    our_net.cn1.weights = qweights['cn1.k']
    our_net.cn1.bias = qweights['cn1.b']
    our_net.cn2.weights = qweights['cn2.k']
    our_net.cn2.bias = qweights['cn2.b']
    our_net.fc1.weights = qweights['fc1.w']
    our_net.fc1.bias = qweights['fc1.b']
    our_net.fc2.weights = qweights['fc2.w']
    our_net.fc2.bias = qweights['fc2.b']
    return our_net
Example #5
0
    def test_blur(self):
        k = EggNet.make_gauss_kernel()
        cl = EggNet.Conv2dLayer(in_channels=1, out_channels=1, kernel_size=5)
        loader = MnistDataDownloader("../../test/MNIST/")
        path_img, path_lbl = loader.get_path(DataSetType.TRAIN)

        reader = MnistDataReader(path_img, path_lbl)
        for lbl, img in reader.get_next(4):
            img = img.astype(np.float) / 255.0
            img = np.reshape(img, newshape=[-1, 28, 28, 1])
            k = np.reshape(k, newshape=[k.shape[0], k.shape[1], 1, 1])
            cl.kernel = k
            img_out = cl(img)

            # Check the dimensions
            self.assertEqual(img_out.shape, (4, 28, 28, 1))

            # Uncomment to see the image
            img_out = np.reshape(img_out, newshape=[1, 4 * 28, 28, 1])
            img_out = np.squeeze(img_out)
            plt.imshow(img_out, cmap='gray', vmin=0.0, vmax=1.0)
            plt.show()
            break
Example #6
0
    def test_tf_compare(self):
        b = 0
        test_img = np.random.rand(10, 128, 128, 3)  # create 4 test images

        y_tf = keras.backend.numpy_backend.pool2d(test_img,
                                                  pool_size=(2, 2),
                                                  strides=(2, 2),
                                                  padding=None,
                                                  data_format='channels_last',
                                                  pool_mode='max')
        # y_tf = max_pool2d(test_img, ksize=2, strides=2, padding='same', data_format='NHWC')

        y = EggNet.pooling_max(data_in=test_img, pool_size=2, stride=2)

        self.assertEqual(y_tf.shape, y.shape)

        for v1, v2 in zip(y_tf.flatten(), y.flatten()):
            self.assertAlmostEqual(v1, v2, delta=0.01)
Example #7
0
    def testDataShapeCheck(self):
        layers = [
            EggNet.FullyConnectedLayer(input_size=1, output_size=10),
            EggNet.FullyConnectedLayer(input_size=20, output_size=20),
            EggNet.FullyConnectedLayer(input_size=20, output_size=10),
            EggNet.FullyConnectedLayer(input_size=10, output_size=1),
        ]
        self.assertRaises(ValueError, check_layers, layers)

        layers = [
            EggNet.FullyConnectedLayer(input_size=1, output_size=10),
            EggNet.FullyConnectedLayer(input_size=10, output_size=20),
            EggNet.FullyConnectedLayer(input_size=20, output_size=10),
            EggNet.FullyConnectedLayer(input_size=10, output_size=1),
        ]

        try:
            check_layers(layers)
        except ValueError:
            self.fail(msg="Layers check failed")
Example #8
0
    def test_tf_compare_zero(self):

        kernel = np.zeros(shape=(5, 5, 8, 16))
        b = np.zeros(16)

        x = np.random.rand(5, 28, 28, 8)  # create 4 test images

        y_tf = keras.backend.numpy_backend.conv2d(x, kernel, padding='same', data_format='channels_last')
        cl = EggNet.Conv2dLayer(in_channels=1, out_channels=3, kernel_size=5)
        cl.kernel = kernel
        cl.b = b
        y = cl(x)

        self.assertEqual(y_tf.shape, y.shape)
        self.assertTrue(np.allclose(y_tf, y))

        for v1, v2 in zip(y_tf.flatten(), y.flatten()):
            self.assertAlmostEqual(v1, 0, delta=0.0001)
            self.assertAlmostEqual(v2, 0, delta=0.0001)
Example #9
0
    def test_tf_compare3(self):
        # kernel = test_kernel_gauss(size=5, sigma=1.6)
        # kernel = kernel[..., np.newaxis, np.newaxis]
        kernel = 2.0 * (np.random.rand(5, 5, 8, 16) - 0.5)
        b = np.zeros(16)
        x = np.random.rand(30, 28, 28, 8)  # create 4 test images

        y_tf = keras.backend.numpy_backend.conv2d(x, kernel, padding='same', data_format='channels_last')
        y_tf = keras.backend.numpy_backend.relu(y_tf)
        cl = EggNet.Conv2dLayer(in_channels=8, out_channels=16, kernel_size=5, activation='relu')
        cl.kernel = kernel
        cl.b = b
        y = cl(x)

        self.assertEqual(y_tf.shape, y.shape)
        self.assertTrue(np.allclose(y_tf, y))

        for v1, v2 in zip(y_tf.flatten(), y.flatten()):
            self.assertAlmostEqual(v1, v2, delta=0.001)
Example #10
0
    def test_tf_compare1(self):
        # kernel = test_kernel_gauss(size=5, sigma=1.6)
        # kernel = kernel[..., np.newaxis, np.newaxis]
        kernel = np.random.rand(5, 5, 1, 3)
        # kernel = np.zeros(shape=(5, 5, 1, 3))
        b = np.zeros(3)

        x = np.random.rand(5, 28, 28, 1)  # create 4 test images
        y_tf = keras.backend.numpy_backend.conv2d(x, kernel, padding='same', data_format='channels_last')
        cl = EggNet.Conv2dLayer(in_channels=1, out_channels=3, kernel_size=5)
        cl.kernel = kernel
        cl.b = b
        y = cl(x)

        self.assertEqual(y_tf.shape, y.shape)
        self.assertTrue(np.allclose(y_tf, y))
        for v1, v2 in zip(y_tf.flatten(), y.flatten()):
            # self.assertAlmostEqual(v1,0,delta=0.0001)
            # self.assertAlmostEqual(v2, 0, delta=0.0001)
            self.assertAlmostEqual(v1, v2, delta=0.001)
Example #11
0
    def test_forward_prop(self):

        layers = [
            EggNet.ReshapeLayer(newshape=[-1, 28, 28, 1]),
            EggNet.Conv2dLayer(in_channels=1, out_channels=16,
                               kernel_size=3),  # [? 28 28 16]
            EggNet.MaxPool2dLayer(size=2),  # [? 14 14 16]
            EggNet.Conv2dLayer(in_channels=16, out_channels=32,
                               kernel_size=3),  # [? 14 14 32]
            EggNet.MaxPool2dLayer(size=2),  # [?  7  7 32]
            # ConvLayer(in_channels=32, out_channels=64, kernel_size=3),  # [?  7  7 64]
            # MaxPool2dLayer(size=2),
            EggNet.ReshapeLayer(newshape=[-1, 32 * 7 * 7]),
            EggNet.FullyConnectedLayer(input_size=32 * 7 * 7, output_size=64),
            EggNet.FullyConnectedLayer(input_size=64, output_size=10),
        ]

        n = Network(layers)

        # create test data
        x = np.random.rand(10, 28, 28)

        y = n.forward(x)
Example #12
0
    def test_pool(self):
        pl = EggNet.MaxPool2dLayer(size=2)

        img = np.array([
            [1, 2, 1, 1],
            [1, 1, 3, 1],
            [1, 4, 1, 1],
            [4.3, 1, 1, 5],
        ])

        img = np.reshape(img, newshape=(1, 4, 4, 1))

        exp_img = np.array([
            [2, 3],
            [4.3, 5]
        ])
        exp_img = np.reshape(exp_img, newshape=(1, 2, 2, 1))

        p_img = pl(img)

        self.assertEqual(p_img.shape, (1, 2, 2, 1))
        self.assertTrue(np.array_equal(p_img, exp_img))
Example #13
0
    def test_keras_compare(self):

        mnist = tf.keras.datasets.mnist

        IMG_HEIGHT = 28
        IMG_WIDTH = 28

        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        x_train, x_test = x_train / 255.0, x_test / 255.0

        x = x_train[0:10, :, :]
        xr = np.reshape(x, newshape=(-1, IMG_HEIGHT, IMG_WIDTH, 1))

        cl = EggNet.Conv2dLayer(in_channels=1, out_channels=16, kernel_size=3, activation='relu')
        model = tf.keras.models.Sequential([
            keras.layers.Reshape((IMG_HEIGHT, IMG_WIDTH, 1), input_shape=(IMG_HEIGHT, IMG_WIDTH)),
            keras.layers.Conv2D(16, 3, padding='same', activation='relu'),
        ])

        keras_conv_layer = model.layers[1]
        model.compile(optimizer='adam',
                      loss='sparse_categorical_crossentropy',
                      metrics=['accuracy'])

        y_keras = model.predict(x)
        # y_keras = y_keras.numpy()
        cl.kernel = keras_conv_layer.kernel.numpy()
        cl.b = keras_conv_layer.bias.numpy()
        y = cl(xr)

        err = np.abs(y - y_keras)
        err_flat = err.flatten()
        ix = np.array(indices(err_flat, lambda x: x > 0.5))
        subs = ind2sub(ix, err.shape)

        eq = np.allclose(y, y_keras, atol=0.1)
        self.assertTrue(eq)
Example #14
0
    def test_tensorflow_parameter_0(self):
        r1 = EggNet.ReshapeLayer(newshape=[-1, 28, 28, 1])
        cn1 = EggNet.Conv2dLayer(in_channels=1,
                                 out_channels=16,
                                 kernel_size=3,
                                 activation='relu')  # [? 28 28 16]

        checkpoint_path = "test/training_1/cp.ckpt"
        checkpoint_dir = os.path.abspath(os.path.dirname(checkpoint_path))
        os.path.join(checkpoint_dir, "model_config.json")
        if not os.path.exists(checkpoint_dir):
            raise RuntimeError("There is no trained model data!")

        # Reload the model from the 2 files we saved
        with open(os.path.join(checkpoint_dir,
                               "model_config.json")) as json_file:
            json_config = json_file.read()

        model = keras.models.model_from_json(json_config)
        model.load_weights(os.path.join(checkpoint_dir, "weights.h5"))

        # Print a summary
        Ws = model.get_weights()

        # See Keras Documentation
        # https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
        #
        # Default ordering of weights for Conv: (batch, height, width, channels)
        # Default ordering of weights for Dense
        self.assertEqual(cn1.kernel.shape, Ws[0].shape)
        self.assertEqual(cn1.b.shape, Ws[1].shape)

        # Assign values
        cn1.kernel = Ws[0]
        cn1.b = Ws[1]
        layers = [
            r1,
            cn1,
        ]
        interesting_layers = [1]  # don't care about reshape layers
        n = EggNet.Network(layers)

        loader = MnistDataDownloader("../../test/MNIST/")
        path_img, path_lbl = loader.get_path(DataSetType.TRAIN)
        reader = MnistDataReader(path_img, path_lbl)

        for lbls, imgs in reader.get_next(10):
            imgs = imgs.astype(np.float) / 255.0
            imgs_r = np.reshape(imgs, newshape=[-1, 28, 28, 1])

            # Check the tensorflow model
            y_keras = model.predict(imgs)

            # Keras Model Debug
            inp = model.input  # input placeholder
            outputs = [layer.output
                       for layer in model.layers]  # all layer outputs
            outputs = [outputs[i]
                       for i in (1, 2, 3, 4, 6, 8)]  # remove dropout, reshape
            functors = [K.function([inp], [out])
                        for out in outputs]  # evaluation functions
            layer_outs = [func([imgs, 1.]) for func in functors]
            # print(layer_outs)

            # Check the results of the own made NN
            y, zs = n.forward_intermediate(imgs_r)
            zs = [zs[i] for i in interesting_layers]  # remove reshape layers
            eps = 0.1
            index = 0
            for l_keras_out, l_out in zip(layer_outs, zs):
                err = np.abs((l_keras_out - l_out).flatten())
                # print(l_keras_out - l_out)

                # err_image = 1.0 * (np.abs(l_keras_out - l_out) > eps)
                # # err_image = np.reshape(err_image[], newshape=(1, -1, 28, 1))
                # err_image = np.squeeze(err_image[0, :, :, 0])
                # plt.imshow(err_image, vmin=0.0, vmax=1.0, cmap='gray')
                # plt.show()

                right_indices = indices(err < eps, lambda b: b)
                false_indices = indices(err > eps, lambda b: b)
                wrong_values = err[false_indices]
                # print(wrong_values)

                if not np.all(right_indices):
                    print("error in layer ", index)
                index += 1

            lbls_pred_keras = y_keras.argmax(axis=1)
            lbls_pred = y.argmax(axis=1)
            print("Original:  ", lbls.reshape(-1))
            print("Keras:     ", lbls_pred_keras.reshape(-1))
            print("Our Model: ", lbls_pred.reshape(-1))

            break
Example #15
0
    def test_tensorflow_parameter(self):
        r1 = EggNet.ReshapeLayer(newshape=[-1, 28, 28, 1])
        cn1 = EggNet.Conv2dLayer(in_channels=1,
                                 out_channels=16,
                                 kernel_size=3,
                                 activation='relu')  # [? 28 28 16]
        mp1 = EggNet.MaxPool2dLayer(size=2)  # [? 14 14 16]
        cn2 = EggNet.Conv2dLayer(in_channels=16,
                                 out_channels=32,
                                 kernel_size=3,
                                 activation='relu')  # [? 14 14 32]
        mp2 = EggNet.MaxPool2dLayer(size=2)  # [?  7  7 32]
        r2 = EggNet.ReshapeLayer(newshape=[-1, 32 * 7 * 7])
        fc1 = EggNet.FullyConnectedLayer(input_size=32 * 7 * 7,
                                         output_size=64,
                                         activation='relu')
        fc2 = EggNet.FullyConnectedLayer(input_size=64,
                                         output_size=10,
                                         activation='softmax')

        checkpoint_path = "test/training_1/cp.ckpt"
        checkpoint_dir = os.path.abspath(os.path.dirname(checkpoint_path))
        os.path.join(checkpoint_dir, "model_config.json")
        if not os.path.exists(checkpoint_dir):
            raise RuntimeError("There is no trained model data!")

        # Reload the model from the 2 files we saved
        with open(os.path.join(checkpoint_dir,
                               "model_config.json")) as json_file:
            json_config = json_file.read()

        model = keras.models.model_from_json(json_config)
        model.load_weights(os.path.join(checkpoint_dir, "weights.h5"))

        # Print a summary
        Ws = model.get_weights()

        # K0 = Ws[0]
        # plt.imshow(K0[:,:,1,1], vmin=0.0, vmax=1.0, cmap='gray')
        # plt.show()

        # See Keras Documentation
        # https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
        #
        # Default ordering of weights for Conv: (batch, height, width, channels)
        # Default ordering of weights for Dense
        self.assertEqual(cn1.kernel.shape, Ws[0].shape)
        self.assertEqual(cn1.b.shape, Ws[1].shape)
        self.assertEqual(cn2.kernel.shape, Ws[2].shape)
        self.assertEqual(cn2.b.shape, Ws[3].shape)
        self.assertEqual(fc1.W.shape, Ws[4].shape)
        self.assertEqual(fc1.b.shape, Ws[5].shape)
        self.assertEqual(fc2.W.shape, Ws[6].shape)
        self.assertEqual(fc2.b.shape, Ws[7].shape)

        # Assign values
        cn1.kernel = Ws[0]
        cn1.b = Ws[1]
        cn2.kernel = Ws[2]
        cn2.b = Ws[3]
        fc1.W = Ws[4]
        fc1.b = Ws[5]
        fc2.W = Ws[6]
        fc2.b = Ws[7]

        layers = [r1, cn1, mp1, cn2, mp2, r2, fc1, fc2]
        interesting_layers = [1, 2, 3, 4, 6,
                              7]  # don't care about reshape layers

        net = EggNet.Network(layers)

        loader = MnistDataDownloader("../../test/MNIST/")
        path_img, path_lbl = loader.get_path(DataSetType.TRAIN)
        reader = MnistDataReader(path_img, path_lbl)

        for lbls, imgs in reader.get_next(20):
            imgs = imgs.astype(np.float) / 255.0
            imgs_r = np.reshape(imgs, newshape=[-1, 28, 28, 1])

            # Check the tensorflow model
            y_keras = model.predict(imgs)

            # Keras Model Debug
            inp = model.input  # input placeholder
            outputs = [layer.output
                       for layer in model.layers]  # all layer outputs
            outputs = [outputs[i]
                       for i in (1, 2, 3, 4, 6, 8)]  # remove dropout, reshape
            functors = [K.function([inp], [out])
                        for out in outputs]  # evaluation functions
            layer_outs = [func([imgs, 1.]) for func in functors]
            # print(layer_outs)

            # Check the results of the own made NN
            y, zs = net.forward_intermediate(imgs_r)
            zs = [zs[i] for i in interesting_layers]  # remove reshape layers
            eps = 0.1
            index = 0
            for l_keras_out, l_out in zip(layer_outs, zs):

                l_keras_out = l_keras_out[0]  # why ever
                err = np.abs((l_keras_out - l_out))
                # err_subs = ind2sub(indices(err.flatten(), lambda x: x > 1), l_out.shape)
                # self.assertTrue(np.allclose(l_out, l_keras_out))

                #print(l_keras_out - l_out)

                # img_keras = np.squeeze()
                # err_image = 1.0 * (np.abs(l_keras_out - l_out) > eps)

                # Test: Shift l_out

                # l_out[:, 0:-1, 0:-1, :] = l_out[:, 1:, 1:, :]

                # err_image = l_keras_out - l_out
                # # err_image = np.reshape(err_image, newshape=(1, 28, 28, 1))
                # # err_image = np.squeeze(err_image[0, :, :, 0])
                # err_image = np.concatenate([np.squeeze(err_image[0, :, :, i]) for i in range(4)], axis=1)
                # img_keras = np.concatenate([np.squeeze(l_keras_out[0, :, :, i]) for i in range(4)], axis=1)
                # img_nn = np.concatenate([np.squeeze(l_out[0, :, :, i]) for i in range(4)], axis=1)
                # img = np.concatenate([img_nn, img_keras, err_image], axis=0)
                #
                # fig, ax = plt.subplots()
                # _im = ax.imshow(img, cmap='gray')
                # ax.set_title('Computation Layer {}'.format(index))
                # ax.set_yticks([14, 14 + 28, 14 + 2 * 28])
                # ax.set_yticklabels(['Our NN', 'Keras', 'Difference'])
                # fig.colorbar(_im)
                # plt.show()

                #right_indices = indices(err < eps, lambda b: b)
                #false_indices = indices(err > eps, lambda b: b)
                #wrong_values = err[false_indices]
                #print(wrong_values)

                if not np.allclose(l_out, l_keras_out, atol=0.0001):
                    print("error in layer ", index)
                    breakpoint()
                index += 1

            lbls_pred_keras = y_keras.argmax(axis=1)
            lbls_pred = y.argmax(axis=1)
            print("Original:  ", lbls.reshape(-1))
            print("Keras:     ", lbls_pred_keras.reshape(-1))
            print("Our Model: ", lbls_pred.reshape(-1))

            break
Example #16
0
def fpi_conv2D(data_in, kernel_in, dtype_out=np.int8, stride=1):
    nn.conv2d(
        data_in=data_in.astype(dtype_out),
        kernel=kernel_in.astype(dtype_out),
    )
Example #17
0
def can_kernel_overflow(qkernel, kernel_bits, kernel_frac_bits, qinputs,
                        input_bits, input_frac_bits, output_bits,
                        output_frac_bits):
    qout = nn.conv2d(qinputs, qkernel)
Example #18
0
def init_quant_network_from_weights(qweights, shift, options):
    our_net = EggNet.FpiLeNet(qweights,
                              shifts=shift,
                              options=options,
                              real_quant=True)
    return our_net
Example #19
0
def _get_layers(weights_dict, target_bits, fraction_bits):
    assert target_bits > fraction_bits

    value_bits = target_bits - fraction_bits

    a_max = 2 ** (value_bits - 1) - 1
    a_min = -2 ** (value_bits - 1)
    scale = 1 / 2 ** value_bits

    c1_k1 = weights_dict['conv1_k']
    c1_b1 = weights_dict['conv1_b']
    c2_k2 = weights_dict['conv2_k']
    c2_b2 = weights_dict['conv2_b']

    fc1_w = weights_dict['fc1_w']
    fc1_b = weights_dict['fc1_b']
    fc2_w = weights_dict['fc2_w']
    fc2_b = weights_dict['fc2_b']

    # ni3 = nn_lenet_f64.fc1.input_size
    # no3 = nn_lenet_f64.fc1.output_size
    # ni4 = nn_lenet_f64.fc2.input_size
    # no4 = nn_lenet_f64.fc2.output_size
    ni3, no3 = fc1_w.shape
    ni4, no4 = fc2_w.shape

    qk1 = np.clip(c1_k1 / scale, a_max=a_max, a_min=a_min).astype(np.int8)
    qb1 = np.clip(c1_b1 / scale, a_max=a_max, a_min=a_min).astype(np.int8)
    qk2 = np.clip(c2_k2 / scale, a_max=a_max, a_min=a_min).astype(np.int8)
    qb2 = np.clip(c2_b2 / scale, a_max=a_max, a_min=a_min).astype(np.int8)

    qw3 = np.clip(fc1_w / scale, a_max=a_max, a_min=a_min).astype(np.int8)
    qb3 = np.clip(fc1_b / scale, a_max=a_max, a_min=a_min).astype(np.int8)
    qw4 = np.clip(fc2_w / scale, a_max=a_max, a_min=a_min).astype(np.int8)
    qb4 = np.clip(fc2_b / scale, a_max=a_max, a_min=a_min).astype(np.int8)

    dfrac_bits = 2 * fraction_bits

    layers = [

        EggNet.ReshapeLayer(newshape=(-1, 28, 28, 1)),
        EggNet.Conv2dLayer(in_channels=1, out_channels=3, kernel_size=3, kernel_init_weights=qk1,
                           bias_init_weights=qb1, use_bias=True),
        EggNet.ShiftLayer(target_bits=target_bits, target_frac_bits=fraction_bits, source_bits=16,
                          source_frac_bits=dfrac_bits),
        EggNet.ReluActivationLayer(),
        EggNet.MaxPool2dLayer(),
        EggNet.Conv2dLayer(in_channels=3, out_channels=9, kernel_size=3, kernel_init_weights=qk2,
                           bias_init_weights=qb2, use_bias=True),
        EggNet.ShiftLayer(target_bits=target_bits, target_frac_bits=fraction_bits, source_bits=16,
                          source_frac_bits=dfrac_bits),
        EggNet.ReluActivationLayer(),
        EggNet.MaxPool2dLayer(),
        EggNet.FlattenLayer(),
        EggNet.BreakpointLayer(enabled=False),
        EggNet.FullyConnectedLayer(input_size=ni3, output_size=no3, dtype=np.int16, weights=qw3, bias=qb3),
        EggNet.ShiftLayer(target_bits=target_bits, target_frac_bits=fraction_bits, source_bits=16,
                          source_frac_bits=dfrac_bits),
        EggNet.ReluActivationLayer(),
        EggNet.FullyConnectedLayer(input_size=ni4, output_size=no4, dtype=np.int16, weights=qw4, bias=qb4),
        EggNet.ShiftLayer(target_bits=target_bits, target_frac_bits=fraction_bits, source_bits=16,
                          source_frac_bits=dfrac_bits),
        EggNet.SoftmaxLayer()
    ]

    return layers
Example #20
0
    def __init__(self, weights, options, shifts, real_quant=False):
        # Check input

        r1 = EggNet.ReshapeLayer(newshape=[-1, 28, 28, 1])
        cn1 = EggNet.Conv2dLayer(in_channels=1, out_channels=16, kernel_size=3, activation='relu',
                                 dtype=np.float32)  # [? 28 28 16]
        mp1 = EggNet.MaxPool2dLayer(size=2)  # [? 14 14 16]
        cn2 = EggNet.Conv2dLayer(in_channels=16, out_channels=32, kernel_size=3, activation='relu')  # [? 14 14 32]
        mp2 = EggNet.MaxPool2dLayer(size=2)  # [?  7  7 32]
        r2 = EggNet.FlattenLayer()
        fc1 = EggNet.FullyConnectedLayer(input_size=32 * 7 * 7, output_size=32, activation='relu', dtype=np.float32)

        if real_quant:
            fc2 = EggNet.FullyConnectedLayer(input_size=32, output_size=10, activation=None)
        else:
            fc2 = EggNet.FullyConnectedLayer(input_size=32, output_size=10, activation='softmax')

        if real_quant:
            rs1 = EggNet.SimpleShiftLayer(shift=shifts[0], a_min=options['out_min'][0], a_max=options['out_max'][0])
            rs2 = EggNet.SimpleShiftLayer(shift=shifts[1], a_min=options['out_min'][1], a_max=options['out_max'][1])
            rs3 = EggNet.SimpleShiftLayer(shift=shifts[2], a_min=options['out_min'][2], a_max=options['out_max'][2])
            rs4 = EggNet.SimpleShiftLayer(shift=shifts[3], a_min=options['out_min'][3], a_max=options['out_max'][3])
        else:
            # scales = 2.0 ** (-shifts)
            scales = np.ones(shape=(4,))
            rs1 = EggNet.ScaleLayer(scale=scales[0], a_min=options['out_min_f'][0], a_max=options['out_max_f'][0])
            rs2 = EggNet.ScaleLayer(scale=scales[1], a_min=options['out_min_f'][1], a_max=options['out_max_f'][1])
            rs3 = EggNet.ScaleLayer(scale=scales[2], a_min=options['out_min_f'][2], a_max=options['out_max_f'][2])
            rs4 = EggNet.ScaleLayer(scale=scales[3], a_min=options['out_min_f'][3], a_max=options['out_max_f'][3])
        self.rs1 = rs1
        self.rs2 = rs2
        self.rs3 = rs3
        self.rs4 = rs4

        # Store a reference to each layer
        self.r1 = r1
        self.cn1 = cn1
        self.mp1 = mp1
        self.cn2 = cn2
        self.mp2 = mp2
        self.r2 = r2
        self.fc1 = fc1
        self.fc2 = fc2

        self.cn1.weights = weights['cn1.k']
        self.cn1.bias = weights['cn1.b']
        self.cn2.weights = weights['cn2.k']
        self.cn2.bias = weights['cn2.b']
        self.fc1.weights = weights['fc1.w']
        self.fc1.bias = weights['fc1.b']
        self.fc2.weights = weights['fc2.w']
        self.fc2.bias = weights['fc2.b']

        self.lenet_layers = [r1,
                             cn1, mp1, rs1,
                             cn2, mp2, rs2,
                             r2,
                             fc1, rs3,
                             fc2, rs4]

        super(FpiLeNet, self).__init__(self.lenet_layers)