def main(): """ Runs independently from command line to test the GALE algorithm. """ graphPerformance = False # Built in graphing ability, currently not functional, but mechanism is in place. trainData = "2_1000_0_1600_0_0_CV_0_Train.txt" testData = "2_1000_0_1600_0_0_CV_0_Test.txt" outProg = "GH_GALE_ProgressTrack" outPop = "GH_GALE_PopulationOut" bitLength = 1 # This implementation is not yet set up to handle other rule representations, or bit encoding lengths. CVpartitions = 10 trackCycles = 1 iterInput = '5.10.20' xdim = 10 ydim = 10 dist = 2 wild = 0.75 prune = 1 #Figure out the iteration stops for evaluation, and the max iterations. iterList = iterInput.split('.') for i in range(len(iterList)): iterList[i] = int(iterList[i]) lastIter = iterList[len(iterList)-1] #Sets up up algorithm to be run. GALEConstants.setConstants(prune, wild) e = GALE_Environment(trainData,testData,bitLength) sampleSize = e.getNrSamples() gale = GALE(e, outProg, outPop, bitLength, CVpartitions, graphPerformance, xdim, ydim, dist) #Set some GALE parameters. if trackCycles == 'Default': gale.setTrackingIterations(sampleSize) else: gale.setTrackingIterations(trackCycles) gale.setNumberOfTrials(lastIter, iterList) #Run the GALE Algorithm gale.runGALE()
12: Pruning - '0' or '1' 13: Wild frequency - 0.5, 0.75 """ # ************************************************************************************************* graphPerformance = False # Built in graphing ability, currently not functional, but mechanism is in place. NOT MEANT TO BE USED ON CLUSTER. numArgs = len(argv) print "Arguments: " + str(numArgs) if numArgs == 14: if argv[1] == 'gh': #Different rule representations could be programmed but have not been in this implementation. print ("Format Training data: "+argv[2]+" using a "+argv[6]+" bit coding scheme.") #Sets up up algorithm to be run. GALEConstants.setConstants(int(argv[12]), float(argv[13])) e = GALE_Environment(str(argv[2]), str(argv[3]), int(argv[6])) sampleSize = e.getNrSamples() gale = GALE(e, argv[4], argv[5], int(argv[6]), int(argv[7]), graphPerformance, int(argv[10]), int(argv[10]), int(argv[11])) #Figure out the iteration stops for evaluation, and the max iterations. iterList = argv[9].split('.') for i in range(len(iterList)): iterList[i] = int(iterList[i]) lastIter = iterList[len(iterList)-1] #Set some GALE parameters. if argv[9] == 'Default': gale.setTrackingIterations(sampleSize) else: gale.setTrackingIterations(int(argv[8])) gale.setNumberOfTrials(lastIter, iterList)