def main(): #(MANOVA?) GLM general linear model with within subject comparisons of interest, gender, diff # VARIABLES nameList = ['pp', 'gp','tb','bt', 't1', 'tl', 'ni','dn', 'cv','td','pe','kn','uv', 'rp','ya','na'] labelList= ['point2point', 'gist2point', 'top2bottom', 'bottom2top', 'firstthing', 'lastthing', 'novelinfo', 'datesnumnames', 'concurrentverb', 'duringdistractor', 'personalexp', 'generalknowledge', 'visualizations', 'repitition','mainidea', 'keytopicword'] proquestions = ['1','2','3'] suffix = ['im','ii','bm','bi'] stratdiff = "s" promain= "p" mathread = "r" GLMtext = GLMfunctions.makeGLMtext() f.write("DATASET COPY proCopy WINDOW=FRONT.\nDATASET ACTIVATE proCopy.\n" for i in range(0,2): ## SELECT HIGH INTEREST ## filtersign = ["~=","="] if mathread == "m": spint = "mathspint" elif mathread == "r": spint = "readspint" filterText = """USE ALL. \nCOMPUTE filter_$=("""+spint+filtersign[i]+ "2"+"""). \nVARIABLE LABELS filter_$ '""" + spint+filtersign[i]+ "2" +"""(FILTER)'. \nVALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. \nFORMATS filter_$ (f1.0). \nFILTER BY filter_$. \nEXECUTE.\n\n""" f.write(filterText) for i in range(len(nameList)): #RECODE AND COMPUTE nameListi = nameList[i] labelListi = labelList[i] recodeline = GLMfunctions.makeRecodeLine(suffix,proquestions,promain,mathread,stratdiff,nameListi) computelines = GLMfunctions.makeComputeLines(suffix,proquestions,promain,mathread,stratdiff,nameListi,labelListi) s = recodeline+computelines f.write(s) # GLM text = "GLM " + labelListi+"im "+ labelListi+"ii "+ labelListi+"bm "+ labelListi+"bi "+"BY sex" f.write(text) f.write(GLMtext) f.write('\n') # GROUPED readstrat1 = ["point2point", "top2bottom"] GLMfunctions.printCompute(readstrat1,"readstrat1",suffix,GLMtext,f) recall = ['point2point', 'gist2point', 'top2bottom', 'bottom2top', 'firstthing', 'lastthing'] encoding = ['novelinfo', 'datesnumnames','personalexp','generalknowledge','visualizations','mainidea','keytopicword'] compmonitor = ['concurrentverb','duringdistractor','repitition'] # Rehearsal vs elaboration vs organizational vs comprehension monitoring vs affective/motivational rehearsal = ['duringdistractor', 'repitition'] elaboration = ['novelinfo','datesnumnames','personalexp','generalknowledge','visualizations'] organizational = ['point2point', 'gist2point', 'top2bottom', 'bottom2top', 'firstthing', 'lastthing','mainidea','keytopicword'] compmonitor2 = ['concurrentverb'] affectivemot = [] #Basic vs complex for rehearsal, elaboration, organizational rehearsalb = ['repitition'] elaborationb = ['novelinfo','datesnumnames','personalexp','generalknowledge','visualizations'] organizationalb = ['point2point', 'top2bottom', 'bottom2top', 'firstthing', 'lastthing'] rehearsalc = ['duringdistractor'] elaborationc = [] organizationalc = ['gist2point','mainidea','keytopicword'] selection = ['novelinfo','datesnumnames'] acquisition = [] construction = ['visualizations','mainidea','keytopicword'] integration = ['personalexp','generalknowledge'] allgroups = [recall,encoding,compmonitor,rehearsal, elaboration, organizational, compmonitor2, affectivemot, rehearsalb, elaborationb, organizationalb, rehearsalc, elaborationc, organizationalc, selection, acquisition, construction, integration] allgroupsname = ['recall','encoding','compmonitor','rehearsal', 'elaboration', 'organizational', 'compmonitor2', 'affectivemot', 'rehearsalb', 'elaborationb', 'organizationalb', 'rehearsalc', 'elaborationc', 'organizationalc', 'selection', 'acquisition', 'construction', 'integration'] for k in range(len(allgroups)): for j in range(len(suffix)): f.write("compute " + allgroupsname[k] + suffix[j] +" = (") for i in range(len(allgroups[k])): if i != 0: f.write("+") f.write(allgroups[k][i]+suffix[j]) f.write(")/" + str(len(allgroups[k])) + ".\n") f.write("\n\nGLM") for j in range(len(suffix)): f.write(" "+ allgroupsname[k]+suffix[j]) f.write(" BY sex") f.write(GLMtext + "\n") ## REMOVE FILTER ## f.write("""FILTER OFF.\nUSE ALL.\nEXECUTE.\n\n""") main()
def main(): # (MANOVA?) GLM general linear model with within subject comparisons of interest, gender, diff f = open('manova-promathstrat.txt', 'w+') # VARIABLES nameList = [ 'pa', 'ss', 'ky', 'kc', 'kn', 'nm', 'el', 'un', 'es', 're', 'rc', 'rn', 'sp', 'vi', 'sk', 'pe', 'pk', 'r1', 'gu' ] labelList = [ 'parts', 'sentence', 'keywords', 'keywordscontext', 'keywordsnumbers', 'numbers', 'eliminatekeys', 'usesallnum', 'estimate', 'reasonable', 'rereadscomp', 'rereadsnum', 'paraphrase', 'visualize', 'sketch', 'personalexp', 'priorknow', 'readthrough1st', 'guess' ] proquestions = ['1', '2', '3'] suffix = ['im', 'ii', 'bm', 'bi'] stratdiff = "s" promain = "p" mathread = "m" GLMtext = GLMfunctions.makeGLMtext() f.write("DATASET COPY proCopy WINDOW=FRONT.\nDATASET ACTIVATE proCopy.\n") for i in range(len(nameList)): #RECODE AND COMPUTE nameListi = nameList[i] labelListi = labelList[i] recodeline = GLMfunctions.makeRecodeLine(suffix, proquestions, promain, mathread, stratdiff, nameListi) computelines = GLMfunctions.makeComputeLines(suffix, proquestions, promain, mathread, stratdiff, nameListi, labelListi) s = recodeline + computelines f.write(s) # GLM text = "GLM " + labelListi + "im " + labelListi + "ii " + labelListi + "bm " + labelListi + "bi " + "BY sex" f.write(text) f.write(GLMtext) f.write('\n') # GROUPED mathstrat1 = ["sentence", "usesallnum"] mathstrat3 = ["paraphrase", "visualize"] mathstrat5 = ["eliminateskeys", "rereadsnum"] GLMfunctions.printCompute(mathstrat1, "mathstrat1", suffix, GLMtext, f) GLMfunctions.printCompute(mathstrat3, "mathstrat3", suffix, GLMtext, f) GLMfunctions.printCompute(mathstrat5, "mathstrat5", suffix, GLMtext, f) # Rehearsal vs elaboration vs organizational vs comprehension monitoring vs affective/motivational rehearsal = [] elaboration = [ 'paraphrase', 'visualize', 'sketch', 'personalexp', 'priorknow' ] organizational = [ 'parts', 'sentence', 'keywords', 'keywordscontext', 'keywordsnumbers', 'numbers', 'eliminatekeys', 'usesallnum' ] compmonitor2 = [ 'estimate', 'reasonable', 'rereadscomp', 'rereadsnum', 'readthrough1st' ] affectivemot = [] #Basic vs complex for rehearsal, elaboration, organizational rehearsalb = [] elaborationb = ['visualize', 'sketch'] organizationalb = ['numbers', 'eliminatekeys', 'usesallnum'] affectivemotb = [] rehearsalc = [] elaborationc = ['paraphrase', 'personalexp', 'priorknow'] organizationalc = [ 'parts', 'sentence', 'keywords', 'keywordscontext', 'keywordsnumbers' ] allgroups = [ rehearsal, elaboration, organizational, compmonitor2, affectivemot, rehearsalb, elaborationb, organizationalb, rehearsalc, elaborationc, organizationalc ] allgroupsname = [ 'rehearsal', 'elaboration', 'organizational', 'compmonitor2', 'affectivemot', 'rehearsalb', 'elaborationb', 'organizationalb', 'rehearsalc', 'elaborationc', 'organizationalc' ] for k in range(len(allgroups)): for j in range(len(suffix)): f.write("compute " + allgroupsname[k] + suffix[j] + " = (") for i in range(len(allgroups[k])): if i != 0: f.write("+") f.write(allgroups[k][i] + suffix[j]) f.write(")/" + str(len(allgroups[k])) + ".\n") f.write("\n\nGLM") for j in range(len(suffix)): f.write(" " + allgroupsname[k] + suffix[j]) f.write(" BY sex") f.write(GLMtext + "\n")
def main(): # (MANOVA?) GLM general linear model with within subject comparisons of interest, gender, diff # VARIABLES nameList = [ 'su', 'sp', 'cd', 'cp', 'ck', 'cv', 'ex', 'td', 'lk', 'ua', 'qu', 'pa', 'na', 'ct' ] labelList = [ 'setup', 'partialsetup', 'comprehension', 'comprehensionparts', 'keywordcomprehension', 'vocabcomprehension', 'extramissinginfo', 'toodetailed', 'lackknowledge', 'unreasonable', 'questiondifficulty', 'positiveaffect', 'negativeaffect', 'concentration' ] proquestions = ['1', '2', '3'] suffix = ['im', 'ii', 'bm', 'bi'] stratdiff = "d" promain = "p" mathread = "m" GLMtext = GLMfunctions.makeGLMtext() for i in range(1, 3): ## SELECT HIGH INTEREST ## if mathread == "r": high = [1, 2] low = [4, 5] elif mathread == "m": high = [1, 4] low = [2, 5] if i == 1: filterText = """USE ALL. \nCOMPUTE filter_$=(cell = """ + str( high[0] ) + "| " + """cell = """ + str( high[1] ) + """). \nVARIABLE LABELS filter_$ 'cell = """ + str( high[0] ) + " | " + str( high[1] ) + """(FILTER)'. \nVALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. \nFORMATS filter_$ (f1.0). \nFILTER BY filter_$. \nEXECUTE.\n\n""" elif i == 2: filterText = """USE ALL. \nCOMPUTE filter_$=(cell = """ + str( low[0] ) + "| " + """cell = """ + str( low[1] ) + """). \nVARIABLE LABELS filter_$ 'cell = """ + str( low[0] ) + " | " + str( low[1] ) + """(FILTER)'. \nVALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. \nFORMATS filter_$ (f1.0). \nFILTER BY filter_$. \nEXECUTE.\n\n""" f.write( "DATASET COPY proCopy WINDOW=FRONT.\nDATASET ACTIVATE proCopy.\n") f.write(filterText) for i in range(len(nameList)): #RECODE AND COMPUTE nameListi = nameList[i] labelListi = labelList[i] recodeline = GLMfunctions.makeRecodeLine(suffix, proquestions, promain, mathread, stratdiff, nameListi) computelines = GLMfunctions.makeComputeLines( suffix, proquestions, promain, mathread, stratdiff, nameListi, labelListi) s = recodeline + computelines f.write(s) # GLM text = "GLM " + labelListi + "im " + labelListi + "ii " + labelListi + "bm " + labelListi + "bi " + "BY sex" f.write(text) f.write(GLMtext) f.write('\n') # GROUPED mathdiff1 = [ "setup", "comprehension", "extramissinginfo", "toodetailed", "partialsetup", "negativeaffect", "questiondifficulty" ] mathdiff2 = [ "vocabcomprehension", "lackknowledge", "comprehensionparts" ] GLMfunctions.printCompute(mathdiff1, "mathdiff1", suffix, GLMtext, f) GLMfunctions.printCompute(mathdiff2, "mathdiff2", suffix, GLMtext, f) # Rehearsal vs elaboration vs organizational vs comprehension monitoring vs affective/motivational rehearsal = [ 'keywordcomprehension', 'vocabcomprehension', 'questiondifficulty' ] elaboration = [ 'comprehension', 'comprehensionparts', 'lackknowledge', 'positiveaffect', 'negativeaffect' ] organizational = ['setup', 'partialsetup', 'toodetailed'] compmonitor2 = ['extramissinginfo', 'unreasonable'] affectivemot = ['concentration'] #Basic vs complex for rehearsal, elaboration, organizational rehearsalb = [ 'keywordcomprehension', 'vocabcomprehension', 'questiondifficulty' ] elaborationb = ['lackknowledge'] organizationalb = ['setup', 'partialsetup', 'toodetailed'] affectivemotb = [] rehearsalc = [] elaborationc = [ 'comprehension', 'comprehensionparts', 'positiveaffect', 'negativeaffect' ] organizationalc = [] allgroups = [ rehearsal, elaboration, organizational, compmonitor2, affectivemot, rehearsalb, elaborationb, organizationalb, rehearsalc, elaborationc, organizationalc ] allgroupsname = [ 'rehearsal', 'elaboration', 'organizational', 'compmonitor2', 'affectivemot', 'rehearsalb', 'elaborationb', 'organizationalb', 'rehearsalc', 'elaborationc', 'organizationalc' ] for k in range(len(allgroups)): for j in range(len(suffix)): f.write("compute " + allgroupsname[k] + suffix[j] + " = (") for i in range(len(allgroups[k])): if i != 0: f.write("+") f.write(allgroups[k][i] + suffix[j]) f.write(")/" + str(len(allgroups[k])) + ".\n") f.write("\n\nGLM") for j in range(len(suffix)): f.write(" " + allgroupsname[k] + suffix[j]) f.write(" BY sex") f.write(GLMtext + "\n") ## REMOVE FILTER ## f.write("""FILTER OFF.\nUSE ALL.\nEXECUTE.\n\n""")
def main(): #(MANOVA?) GLM general linear model with within subject comparisons of interest, gender, diff f = open('manova-proreadstrat.txt','w+') # VARIABLES nameList = ['ptp', 'gtp','ttb','btt', 'th1', 'fin', 'nov','dnn', 'ver','tid','pex','pkn','eye', 'agn','ide','ktw'] labelList= ['point2point', 'gist2point', 'top2bottom', 'bottom2top', 'firstthing', 'lastthing', 'novelinfo', 'datesnumnames', 'concurrentverb', 'duringdistractor', 'personalexp', 'generalknowledge', 'visualizations', 'repitition','mainidea', 'keytopicword'] proquestions = ['1','2','3'] suffix = ['im','ii','bm','bi'] stratdiff = "s" promain= "p" mathread = "r" GLMtext = GLMfunctions.makeGLMtext() f.write("DATASET COPY proCopy WINDOW=FRONT.\nDATASET ACTIVATE proCopy.\n" for i in range(len(nameList)): #RECODE AND COMPUTE nameListi = nameList[i] labelListi = labelList[i] recodeline = GLMfunctions.makeRecodeLine(suffix,proquestions,promain,mathread,stratdiff,nameListi) computelines = GLMfunctions.makeComputeLines(suffix,proquestions,promain,mathread,stratdiff,nameListi,labelListi) s = recodeline+computelines f.write(s) # GLM text = "GLM " + labelListi+"im "+ labelListi+"ii "+ labelListi+"bm "+ labelListi+"bi "+"BY sex" f.write(text) f.write(GLMtext) f.write('\n') # GROUPED readstrat1 = ["point2point", "top2bottom"] GLMfunctions.printCompute(readstrat1,"readstrat1",suffix,GLMtext,f) recall = ['point2point', 'gist2point', 'top2bottom', 'bottom2top', 'firstthing', 'lastthing'] encoding = ['novelinfo', 'datesnumnames','personalexp','generalknowledge','visualizations','mainidea','keytopicword'] compmonitor = ['concurrentverb','duringdistractor','repitition'] # Rehearsal vs elaboration vs organizational vs comprehension monitoring vs affective/motivational rehearsal = ['duringdistractor', 'repitition'] elaboration = ['novelinfo','datesnumnames','personalexp','generalknowledge','visualizations'] organizational = ['point2point', 'gist2point', 'top2bottom', 'bottom2top', 'firstthing', 'lastthing','mainidea','keytopicword'] compmonitor2 = ['concurrentverb'] affectivemot = [] #Basic vs complex for rehearsal, elaboration, organizational rehearsalb = ['repitition'] elaborationb = ['novelinfo','datesnumnames','personalexp','generalknowledge','visualizations'] organizationalb = ['point2point', 'top2bottom', 'bottom2top', 'firstthing', 'lastthing'] affectivemotb = [] rehearsalc = ['duringdistractor'] elaborationc = [] organizationalc = ['gist2point','mainidea','keytopicword'] selection = ['novelinfo','datesnumnames'] acquisition = [] construction = ['visualizations','mainidea','keytopicword'] integration = ['personalexp','generalknowledge'] allgroups = [recall,encoding,compmonitor,rehearsal, elaboration, organizational, compmonitor2, affectivemot, rehearsalb, elaborationb, organizationalb, rehearsalc, elaborationc, organizationalc, selection, acquisition, construction, integration] allgroupsname = ['recall','encoding','compmonitor','rehearsal', 'elaboration', 'organizational', 'compmonitor2', 'affectivemot', 'rehearsalb', 'elaborationb', 'organizationalb', 'rehearsalc', 'elaborationc', 'organizationalc', 'selection', 'acquisition', 'construction', 'integration'] for k in range(len(allgroups)): for j in range(len(suffix)): f.write("compute " + allgroupsname[k] + suffix[j] +" = (") for i in range(len(allgroups[k])): if i != 0: f.write("+") f.write(allgroups[k][i]+suffix[j]) f.write(")/" + str(len(allgroups[k])) + ".\n") f.write("\n\nGLM") for j in range(len(suffix)): f.write(" "+ allgroupsname[k]+suffix[j]) f.write(" BY sex") f.write(GLMtext + "\n") main()
def main(): # (MANOVA?) GLM general linear model with within subject comparisons of interest, gender, diff # VARIABLES nameList = ['vo', 'gc','ac','sk', 'pp', 'kt', 'kc','de', 'cv','fp','fa','ya','na', 'nv','nc','in','nt','tg','di','nd'] labelList= ['vocab','generalcomp','factuncertainty','seperating','confuseprevious','lacktopicknow','lackcontentknow','toodetailed','cantverbalize','forgetparagraph','forgetall','positiveaffect','negativeaffect','nervous','noconcentrate','interviewerprocedure','notalki', 'toogeneral','distractor','nodifficulties'] proquestions = ['1','2','3'] suffix = ['im','ii','bm','bi'] stratdiff = "d" promain= "p" mathread = "r" GLMtext = GLMfunctions.makeGLMtext() f.write("DATASET COPY proCopy WINDOW=FRONT.\nDATASET ACTIVATE proCopy.\n" for i in range(0,2): ## SELECT HIGH INTEREST ## filtersign = ["~=","="] if mathread == "m": spint = "mathspint" elif mathread == "r": spint = "readspint" filterText = """USE ALL. \nCOMPUTE filter_$=("""+spint+filtersign[i]+ "2"+"""). \nVARIABLE LABELS filter_$ '""" + spint+filtersign[i]+ "2" +"""(FILTER)'. \nVALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. \nFORMATS filter_$ (f1.0). \nFILTER BY filter_$. \nEXECUTE.\n\n""" f.write(filterText) for i in range(len(nameList)): #RECODE AND COMPUTE nameListi = nameList[i] labelListi = labelList[i] recodeline = GLMfunctions.makeRecodeLine(suffix,proquestions,promain,mathread,stratdiff,nameListi) computelines = GLMfunctions.makeComputeLines(suffix,proquestions,promain,mathread,stratdiff,nameListi,labelListi) s = recodeline+computelines f.write(s) # GLM text = "GLM " + labelListi+"im "+ labelListi+"ii "+ labelListi+"bm "+ labelListi+"bi "+"BY sex" f.write(text) f.write(GLMtext) f.write('\n') # GROUPED readdiff1 = ["vocab", "generalcomp", "lackcontentknow"] readdiff2 = ["toodetailed", "forgetall"] readdiff3 = ["negativeaffect", "toogeneral"] GLMfunctions.printCompute(readdiff1,"readdiff1",suffix,GLMtext,f) GLMfunctions.printCompute(readdiff2,"readdiff2",suffix,GLMtext,f) GLMfunctions.printCompute(readdiff3,"readdiff3",suffix,GLMtext,f) # Recall vs encoding vs comprehension monitoring recall = ['cantverbalize','forgetparagraph','forgetall','nervous','noconcentrate','notalki', 'toogeneral','distractor'] encoding = ['vocab','generalcomp','factuncertainty','seperating','confuseprevious','lacktopicknow','lackcontentknow','toodetailed','positiveaffect','negativeaffect'] compmonitor = [] # Rehearsal vs elaboration vs organizational vs comprehension monitoring vs affective/motivational rehearsal = ['cantverbalize','forgetparagraph','forgetall'] elaboration = ['lacktopicknow','lackcontentknow','positiveaffect','negativeaffect'] organizational = ['vocab','generalcomp','factuncertainty','seperating','confuseprevious','toodetailed','toogeneral'] compmonitor2 = ['notalki'] affectivemot = ['nervous','noconcentrate','distractor'] #Basic vs complex for rehearsal, elaboration, organizational rehearsalb = ['cantverbalize','forgetparagraph','forgetall'] elaborationb = [] organizationalb = ['vocab','generalcomp','confuseprevious','toodetailed','toogeneral'] rehearsalc = [] elaborationc = ['lacktopicknow','lackcontentknow','positiveaffect','negativeaffect'] organizationalc = ['factuncertainty','seperating'] selection = ['confuseprevious','toodetailed','positiveaffect','negativeaffect'] acquisition = ['vocab','generalcomp'] construction = ['factuncertainty'] integration = ['seperating','lacktopicknow','lackcontentknow'] allgroups = [recall,encoding,compmonitor,rehearsal, elaboration, organizational, compmonitor2, affectivemot, rehearsalb, elaborationb, organizationalb, rehearsalc, elaborationc, organizationalc, selection, acquisition, construction, integration] allgroupsname = ['recall','encoding','compmonitor','rehearsal', 'elaboration', 'organizational', 'compmonitor2', 'affectivemot', 'rehearsalb', 'elaborationb', 'organizationalb', 'rehearsalc', 'elaborationc', 'organizationalc', 'selection', 'acquisition', 'construction', 'integration'] for k in range(len(allgroups)): for j in range(len(suffix)): f.write("compute " + allgroupsname[k] + suffix[j] +" = (") for i in range(len(allgroups[k])): if i != 0: f.write("+") f.write(allgroups[k][i]+suffix[j]) f.write(")/" + str(len(allgroups[k])) + ".\n") f.write("\n\nGLM") for j in range(len(suffix)): f.write(" "+ allgroupsname[k]+suffix[j]) f.write(" BY sex") f.write(GLMtext + "\n") ## REMOVE FILTER ## f.write("""FILTER OFF.\nUSE ALL.\nEXECUTE.\n\n""") main()
def main(): # (MANOVA?) GLM general linear model with within subject comparisons of interest, gender, diff f = open('manova-promathdiff.txt', 'w+') # VARIABLES nameList = [ 'su', 'sp', 'cd', 'cp', 'ck', 'cv', 'ex', 'td', 'lk', 'ua', 'qu', 'pa', 'na', 'ct' ] labelList = [ 'setup', 'partialsetup', 'comprehension', 'comprehensionparts', 'keywordcomprehension', 'vocabcomprehension', 'extramissinginfo', 'toodetailed', 'lackknowledge', 'unreasonable', 'questiondifficulty', 'positiveaffect', 'negativeaffect', 'concentration' ] proquestions = ['1', '2', '3'] suffix = ['im', 'ii', 'bm', 'bi'] stratdiff = "d" promain = "p" mathread = "m" GLMtext = GLMfunctions.makeGLMtext() f.write("DATASET COPY proCopy WINDOW=FRONT.\nDATASET ACTIVATE proCopy.\n") for i in range(len(nameList)): #RECODE AND COMPUTE nameListi = nameList[i] labelListi = labelList[i] recodeline = GLMfunctions.makeRecodeLine(suffix, proquestions, promain, mathread, stratdiff, nameListi) computelines = GLMfunctions.makeComputeLines(suffix, proquestions, promain, mathread, stratdiff, nameListi, labelListi) s = recodeline + computelines f.write(s) # GLM text = "GLM " + labelListi + "im " + labelListi + "ii " + labelListi + "bm " + labelListi + "bi " + "BY sex" f.write(text) f.write(GLMtext) f.write('\n') # GROUPED mathdiff1 = [ "setup", "comprehension", "extramissinginfo", "toodetailed", "partialsetup", "negativeaffect", "questiondifficulty" ] mathdiff2 = ["vocabcomprehension", "lackknowledge", "comprehensionparts"] GLMfunctions.printCompute(mathdiff1, "mathdiff1", suffix, GLMtext, f) GLMfunctions.printCompute(mathdiff2, "mathdiff2", suffix, GLMtext, f) # Rehearsal vs elaboration vs organizational vs comprehension monitoring vs affective/motivational rehearsal = [ 'keywordcomprehension', 'vocabcomprehension', 'questiondifficulty' ] elaboration = [ 'comprehension', 'comprehensionparts', 'lackknowledge', 'positiveaffect', 'negativeaffect' ] organizational = ['setup', 'partialsetup', 'toodetailed'] compmonitor2 = ['extramissinginfo', 'unreasonable'] affectivemot = ['concentration'] #Basic vs complex for rehearsal, elaboration, organizational rehearsalb = [ 'keywordcomprehension', 'vocabcomprehension', 'questiondifficulty' ] elaborationb = ['lackknowledge'] organizationalb = ['setup', 'partialsetup', 'toodetailed'] affectivemotb = [] rehearsalc = [] elaborationc = [ 'comprehension', 'comprehensionparts', 'positiveaffect', 'negativeaffect' ] organizationalc = [] allgroups = [ rehearsal, elaboration, organizational, compmonitor2, affectivemot, rehearsalb, elaborationb, organizationalb, rehearsalc, elaborationc, organizationalc ] allgroupsname = [ 'rehearsal', 'elaboration', 'organizational', 'compmonitor2', 'affectivemot', 'rehearsalb', 'elaborationb', 'organizationalb', 'rehearsalc', 'elaborationc', 'organizationalc' ] for k in range(len(allgroups)): for j in range(len(suffix)): f.write("compute " + allgroupsname[k] + suffix[j] + " = (") for i in range(len(allgroups[k])): if i != 0: f.write("+") f.write(allgroups[k][i] + suffix[j]) f.write(")/" + str(len(allgroups[k])) + ".\n") f.write("\n\nGLM") for j in range(len(suffix)): f.write(" " + allgroupsname[k] + suffix[j]) f.write(" BY sex") f.write(GLMtext + "\n")
def main(): # TEST f = open('test.txt', 'w+') # VARIABLES nameList = [ 'vo', 'gc', 'ac', 'sk', 'pp', 'kt', 'kc', 'de', 'cv', 'fp', 'fa', 'ya', 'na', 'nv', 'nc', 'in', 'nt', 'tg', 'di', 'nd' ] labelList = [ 'vocab', 'generalcomp', 'factuncertainty', 'seperating', 'confuseprevious', 'lacktopicknow', 'lackcontentknow', 'toodetailed', 'cantverbalize', 'forgetparagraph', 'forgetall', 'positiveaffect', 'negativeaffect', 'nervous', 'noconcentrate', 'interviewerprocedure', 'notalki', 'toogeneral', 'distractor', 'nodifficulties' ] proquestions = ['1', '2', '3'] suffix = ['im', 'ii', 'bm', 'bi'] stratdiff = "d" promain = "p" mathread = "r" GLMtext = GLMfunctions.makeGLMtext() f.write("DATASET COPY proCopy WINDOW=FRONT.\nDATASET ACTIVATE proCopy.\n") for i in range(len(nameList)): #RECODE AND COMPUTE nameListi = nameList[i] labelListi = labelList[i] recodeline = GLMfunctions.makeRecodeLine(suffix, proquestions, promain, mathread, stratdiff, nameListi) computelines = GLMfunctions.makeComputeLines(suffix, proquestions, promain, mathread, stratdiff, nameListi, labelListi) s = recodeline + computelines f.write(s) # GLM text = "GLM " + labelListi + "im " + labelListi + "ii " + labelListi + "bm " + labelListi + "bi " + "BY sex" f.write(text) f.write(GLMtext) f.write('\n') # GROUPED readdiff1 = ["vocab", "generalcomp", "lackcontentknow"] readdiff2 = ["toodetailed", "forgetall"] readdiff3 = ["negativeaffect", "toogeneral"] GLMfunctions.printCompute(readdiff1, "readdiff1", suffix, GLMtext, f) GLMfunctions.printCompute(readdiff2, "readdiff2", suffix, GLMtext, f) GLMfunctions.printCompute(readdiff3, "readdiff3", suffix, GLMtext, f) # Recall vs encoding vs comprehension monitoring recall = [ 'cantverbalize', 'forgetparagraph', 'forgetall', 'nervous', 'noconcentrate', 'notalki', 'toogeneral', 'distractor' ] encoding = [ 'vocab', 'generalcomp', 'factuncertainty', 'seperating', 'confuseprevious', 'lacktopicknow', 'lackcontentknow', 'toodetailed', 'positiveaffect', 'negativeaffect' ] compmonitor = [] # Rehearsal vs elaboration vs organizational vs comprehension monitoring vs affective/motivational rehearsal = ['cantverbalize', 'forgetparagraph', 'forgetall'] elaboration = [ 'lacktopicknow', 'lackcontentknow', 'positiveaffect', 'negativeaffect' ] organizational = [ 'vocab', 'generalcomp', 'factuncertainty', 'seperating', 'confuseprevious', 'toodetailed', 'toogeneral' ] compmonitor2 = ['notalki'] affectivemot = ['nervous', 'noconcentrate', 'distractor'] #Basic vs complex for rehearsal, elaboration, organizational rehearsalb = ['cantverbalize', 'forgetparagraph', 'forgetall'] elaborationb = [] organizationalb = [ 'vocab', 'generalcomp', 'confuseprevious', 'toodetailed', 'toogeneral' ] rehearsalc = [] elaborationc = [ 'lacktopicknow', 'lackcontentknow', 'positiveaffect', 'negativeaffect' ] organizationalc = ['factuncertainty', 'seperating'] selection = [ 'confuseprevious', 'toodetailed', 'positiveaffect', 'negativeaffect' ] acquisition = ['vocab', 'generalcomp'] construction = ['factuncertainty'] integration = ['seperating', 'lacktopicknow', 'lackcontentknow'] allgroups = [ recall, encoding, compmonitor, rehearsal, elaboration, organizational, compmonitor2, affectivemot, rehearsalb, elaborationb, organizationalb, rehearsalc, elaborationc, organizationalc, selection, acquisition, construction, integration ] allgroupsname = [ 'recall', 'encoding', 'compmonitor', 'rehearsal', 'elaboration', 'organizational', 'compmonitor2', 'affectivemot', 'rehearsalb', 'elaborationb', 'organizationalb', 'rehearsalc', 'elaborationc', 'organizationalc', 'selection', 'acquisition', 'construction', 'integration' ] for k in range(len(allgroups)): for j in range(len(suffix)): f.write("compute " + allgroupsname[k] + suffix[j] + " = (") for i in range(len(allgroups[k])): if i != 0: f.write("+") f.write(allgroups[k][i] + suffix[j]) f.write(")/" + str(len(allgroups[k])) + ".\n") f.write("\n\nGLM") for j in range(len(suffix)): f.write(" " + allgroupsname[k] + suffix[j]) f.write(" BY sex") f.write(GLMtext + "\n")