Example #1
0
def monoCellReduce(ibrav,A):
    'needs a doc string'
    a,b,c,alp,bet,gam = G2lat.A2cell(A)
    G,g = G2lat.A2Gmat(A)
    if ibrav in [11]:
        u = [0,0,-1]
        v = [1,0,2]
        anew = math.sqrt(np.dot(np.dot(v,g),v))
        if anew < a:
            cang = np.dot(np.dot(u,g),v)/(anew*c)
            beta = acosd(-abs(cang))
            A = G2lat.cell2A([anew,b,c,90,beta,90])
    else:
        u = [-1,0,0]
        v = [1,0,1]
        cnew = math.sqrt(np.dot(np.dot(v,g),v))
        if cnew < c:
            cang = np.dot(np.dot(u,g),v)/(a*cnew)
            beta = acosd(-abs(cang))
            A = G2lat.cell2A([a,b,cnew,90,beta,90])
    return A
Example #2
0
def monoCellReduce(ibrav,A):
    'needs a doc string'
    a,b,c,alp,bet,gam = G2lat.A2cell(A)
    G,g = G2lat.A2Gmat(A)
    if ibrav in [13]:
        u = [0,0,-1]
        v = [1,0,2]
        anew = math.sqrt(np.dot(np.dot(v,g),v))
        if anew < a:
            cang = np.dot(np.dot(u,g),v)/(anew*c)
            beta = acosd(-abs(cang))
            A = G2lat.cell2A([anew,b,c,90,beta,90])
    else:
        u = [-1,0,0]
        v = [1,0,1]
        cnew = math.sqrt(np.dot(np.dot(v,g),v))
        if cnew < c:
            cang = np.dot(np.dot(u,g),v)/(a*cnew)
            beta = acosd(-abs(cang))
            A = G2lat.cell2A([a,b,cnew,90,beta,90])
    return A
Example #3
0
 def convert_lattice(self, paramList, params):
     '''
         Convert between A and unit cell parameters. A is defined in GSAS-II
         as A = [G11, G22, G33, 2*G12, 2*G13, 2*G23] with G as the
         reciprocal metric tensor elements.
     '''
     latparamList = [
         '0::A0', '1::A0', '2::A0', '3::A0', '4::A0', '5::A0', '6::A0',
         '7::A0', '8::A0', '9::A0', '10::A0'
     ]
     check = any(item in paramList for item in latparamList)
     if check is True:
         return G2latt.A2cell(params)
     else:
         return G2latt.cell2A(params)
Example #4
0
def findMV(peaks,controls,ssopt,Inst,dlg):
        
    def Val2Vec(vec,Vref,values):
        Vec = []
        i = 0
        for j,r in enumerate(Vref):
            if r:
                if values.size > 1:
                    Vec.append(max(0.0,min(1.0,values[i])))
                else:
                    Vec.append(max(0.0,min(1.0,values)))                    
                i += 1
            else:
                Vec.append(vec[j])
        return np.array(Vec)  
     
    def ZSSfunc(values,peaks,dmin,Inst,SGData,SSGData,vec,Vref,maxH,A,wave,Z,dlg=None):
        Vec = Val2Vec(vec,Vref,values)
        HKL =  G2pwd.getHKLMpeak(dmin,Inst,SGData,SSGData,Vec,maxH,A)
        Peaks = np.array(IndexSSPeaks(peaks,HKL)[1]).T
        Qo = 1./Peaks[-2]**2
        Qc = G2lat.calc_rDsqZSS(Peaks[4:8],A,Vec,Z,Peaks[0],wave)
        chi = np.sum((Qo-Qc)**2)
        if dlg:
            dlg.Pulse()    
        return chi

    if 'C' in Inst['Type'][0]:
        wave = G2mth.getWave(Inst)
    else:
        difC = Inst['difC'][1]
    SGData = G2spc.SpcGroup(controls[13])[1]
    SSGData = G2spc.SSpcGroup(SGData,ssopt['ssSymb'])[1]
    A = G2lat.cell2A(controls[6:12])
    Z = controls[1]
    Vref = [True if x in ssopt['ssSymb'] else False for x in ['a','b','g']]
    values = []
    ranges = []    
    for v,r in zip(ssopt['ModVec'],Vref):
        if r:
            ranges += [slice(.02,.98,.05),]
            values += [v,]
    dmin = getDmin(peaks)-0.005
    Peaks = np.copy(np.array(peaks).T)    
    result = so.brute(ZSSfunc,ranges,finish=so.fmin_cg,
        args=(peaks,dmin,Inst,SGData,SSGData,ssopt['ModVec'],Vref,ssopt['maxH'],A,wave,Z,dlg))
    return Val2Vec(ssopt['ModVec'],Vref,result)
def test0():
    if NeedTestData: TestData()
    ibrav, cell, bestcell, Pwr, peaks = TestData
    print('best cell:', bestcell)
    print('old cell:', cell)
    Peaks = np.array(peaks)
    HKL = Peaks[4:7]
    print(calc_M20(peaks, HKL))
    A = G2lat.cell2A(cell)
    OK, smin, A, result = FitHKL(ibrav, peaks, A, Pwr)
    print('new cell:', G2lat.A2cell(A))
    print('x:', result[0])
    print('cov_x:', result[1])
    print('infodict:')
    for item in result[2]:
        print(item, result[2][item])
    print('msg:', result[3])
    print('ier:', result[4])
    result = refinePeaks(peaks, ibrav, A)
    N, M20, X20, A = result
    print('refinePeaks:', N, M20, X20, G2lat.A2cell(A))
    print('compare bestcell:', bestcell)
Example #6
0
 def SHPenalty(POData):
     
     def OnHKLList(event):
         dlg = G2G.G2MultiChoiceDialog(G2frame, 'Select penalty hkls',
             'Penalty hkls',hkls,filterBox=False)
         try:
             if dlg.ShowModal() == wx.ID_OK:
                 POData[6] = [hkls[i] for i in dlg.GetSelections()]
                 if not POData[6]:
                     POData[6] = ['',]
             else:
                 return
         finally:
             dlg.Destroy()
         wx.CallLater(100,RepaintHistogramInfo)
         
     def OnshToler(event):
         try:
             value = float(shToler.GetValue())
             POData[7] = value
         except ValueError:
             pass
         shToler.SetValue('%.2f'%(POData[7]))
     
     A = G2lat.cell2A(generalData['Cell'][1:7])
     hkls = G2lat.GenPfHKLs(10,SGData,A)    
     shPenalty = wx.BoxSizer(wx.HORIZONTAL)
     shPenalty.Add(wx.StaticText(DData,wx.ID_ANY,' Negative MRD penalty list: '),0,WACV)
     shPenalty.Add(wx.ComboBox(DData,value=POData[6][0],choices=POData[6],
         style=wx.CB_DROPDOWN),0,WACV)
     hklList = wx.Button(DData,label='Select penalty hkls')
     hklList.Bind(wx.EVT_BUTTON,OnHKLList)
     shPenalty.Add(hklList,0,WACV)
     shPenalty.Add(wx.StaticText(DData,wx.ID_ANY,' Zero MRD tolerance: '),0,WACV)
     shToler = wx.TextCtrl(DData,wx.ID_ANY,'%.2f'%(POData[7]),style=wx.TE_PROCESS_ENTER)
     shToler.Bind(wx.EVT_TEXT_ENTER,OnshToler)
     shToler.Bind(wx.EVT_KILL_FOCUS,OnshToler)
     shPenalty.Add(shToler,0,WACV)
     return shPenalty    
Example #7
0
def test0():
    if NeedTestData: TestData()
    msg = 'test FitHKL'
    ibrav, cell, bestcell, Pwr, peaks = TestData
    print 'best cell:', bestcell
    print 'old cell:', cell
    Peaks = np.array(peaks)
    HKL = Peaks[4:7]
    print calc_M20(peaks, HKL)
    A = G2lat.cell2A(cell)
    OK, smin, A, result = FitHKL(ibrav, peaks, A, Pwr)
    print 'new cell:', G2lat.A2cell(A)
    print 'x:', result[0]
    print 'cov_x:', result[1]
    print 'infodict:'
    for item in result[2]:
        print item, result[2][item]
    print 'msg:', result[3]
    print 'ier:', result[4]
    result = refinePeaks(peaks, ibrav, A)
    N, M20, X20, A = result
    print 'refinePeaks:', N, M20, X20, G2lat.A2cell(A)
    print 'compare bestcell:', bestcell
Example #8
0
def test0():
    if NeedTestData: TestData()
    msg = 'test FitHKL'
    ibrav,cell,bestcell,Pwr,peaks = TestData
    print 'best cell:',bestcell
    print 'old cell:',cell
    Peaks = np.array(peaks)
    HKL = Peaks[4:7]
    print calc_M20(peaks,HKL)
    A = G2lat.cell2A(cell)
    OK,smin,A,result = FitHKL(ibrav,peaks,A,Pwr)
    print 'new cell:',G2lat.A2cell(A)    
    print 'x:',result[0]
    print 'cov_x:',result[1]
    print 'infodict:'
    for item in result[2]:
        print item,result[2][item]
    print 'msg:',result[3]
    print 'ier:',result[4]
    result = refinePeaks(peaks,ibrav,A)
    N,M20,X20,A = result
    print 'refinePeaks:',N,M20,X20,G2lat.A2cell(A)
    print 'compare bestcell:',bestcell
 def ReadPDFPhase(self, G2frame, fp):
     '''Read a phase from a ICDD .str file.
     '''
     EightPiSq = 8. * math.pi**2
     self.errors = 'Error opening file'
     Phase = {}
     Atoms = []
     S = fp.readline()
     line = 1
     SGData = None
     cell = []
     cellkey = []
     while S:
         if 'space_group' in S:
             break
         S = fp.readline()
     while S:
         self.errors = 'Error reading at line ' + str(line)
         if 'phase_name' in S:
             Title = S.split('"')[1]
         elif 'Space group (HMS)' in S:
             SpGrp = S.split()[-1]
             SpGrpNorm = G2spc.StandardizeSpcName(SpGrp)
             E, SGData = G2spc.SpcGroup(SpGrpNorm)
             # space group processing failed, try to look up name in table
             while E:
                 print(G2spc.SGErrors(E))
                 dlg = wx.TextEntryDialog(
                     G2frame,
                     SpGrp[:-1] +
                     ' is invalid \nN.B.: make sure spaces separate axial fields in symbol',
                     'ERROR in space group symbol',
                     '',
                     style=wx.OK)
                 if dlg.ShowModal() == wx.ID_OK:
                     SpGrp = dlg.GetValue()
                     E, SGData = G2spc.SpcGroup(SpGrp)
                 else:
                     SGData = G2obj.P1SGData  # P 1
                     self.warnings += '\nThe space group was not interpreted and has been set to "P 1".'
                     self.warnings += "Change this in phase's General tab."
                 dlg.Destroy()
             G2spc.SGPrint(SGData)  #silent check of space group symbol
         elif 'a a_' in S[:7]:
             data = S.split()
             cell.append(float(data[2]))
             cellkey.append(data[1])
         elif 'b b_' in S[:7]:
             data = S.split()
             cell.append(float(data[2]))
             cellkey.append(data[1])
         elif 'b =' in S[:6]:
             data = S.split('=')
             indx = cellkey.index(data[1].split(';')[0])
             cell.append(cell[indx])
         elif 'c c_' in S[:7]:
             data = S.split()
             cell.append(float(data[2]))
         elif 'c =' in S[:6]:
             data = S.split('=')
             indx = cellkey.index(data[1].split(';')[0])
             cell.append(cell[indx])
         elif 'al' in S[:5]:
             cell.append(float(S.split()[1]))
         elif 'be' in S[:5]:
             cell.append(float(S.split()[1]))
         elif 'ga' in S[:5]:
             cell.append(float(S.split()[1]))
             Volume = G2lat.calc_V(G2lat.cell2A(cell))
             break
         S = fp.readline()
     S = fp.readline()
     while S:
         if '/*' in S[:5]:
             break
         if 'site' in S[:7]:
             atom = []
             xyzkey = []
             data = S.split()
             atom.append(data[1])  #name
             pos = data.index('occ') + 1
             atom.append(data[pos])  #type
             atom.append('')  #refine
             for xid in ['x =', 'y =', 'z =']:
                 if xid in S:
                     xpos = S.index(xid) + 3
                     xend = xpos + S[xpos:].index(';')
                     if S[xpos:xend] in xyzkey:
                         atom.append(atom[3 + xyzkey.index(S[xpos:xend])])
                     else:
                         atom.append(eval(S[xpos:xend] + '.'))
                 else:
                     xpos = data.index(xid[0]) + 2
                     xyzkey.append(data[xpos - 1][1:])
                     atom.append(float(data[xpos]))
             atom.append(float(data[pos + 2]))
             SytSym, Mult = G2spc.SytSym(np.array(atom[3:6]), SGData)[:2]
             atom.append(SytSym)
             atom.append(Mult)
             if 'beq' in S:
                 atom.append('I')
                 upos = data.index('beq')
                 atom.append(float(data[upos + 2]) / EightPiSq)
                 atom += [
                     0.,
                     0.,
                     0.,
                     0.,
                     0.,
                     0.,
                 ]
             elif 'ADPs' in S:
                 upos = data.index('ADPs')
                 atom.append('A')
                 atom.append(0.0)
                 for uid in [
                         'Bani11', 'Bani22', 'Bani33', 'Bani12', 'Bani13',
                         'Bani23'
                 ]:
                     upos = data.index(uid) + 1
                     atom.append(float(data[upos]) / EightPiSq)
             else:
                 atom.append('I')
                 atom += [
                     0.02,
                     0.,
                     0.,
                     0.,
                     0.,
                     0.,
                     0.,
                 ]
             atom.append(ran.randint(0, sys.maxsize))
             Atoms.append(atom)
         S = fp.readline()
     fp.close()
     self.errors = 'Error after read complete'
     if not SGData:
         raise self.ImportException("No space group (spcgroup entry) found")
     if not cell:
         raise self.ImportException("No cell found")
     Phase = G2obj.SetNewPhase(Name=Title,
                               SGData=SGData,
                               cell=cell + [
                                   Volume,
                               ])
     Phase['General']['Type'] = 'nuclear'
     Phase['General']['AtomPtrs'] = [3, 1, 7, 9]
     Phase['Atoms'] = Atoms
     return Phase
    def ReadEXPPhase(self, G2frame, filepointer):
        '''Read a phase from a GSAS .EXP file.
        '''
        shModels = ['cylindrical', 'none', 'shear - 2/m', 'rolling - mmm']
        textureData = {
            'Order': 0,
            'Model': 'cylindrical',
            'Sample omega': [False, 0.0],
            'Sample chi': [False, 0.0],
            'Sample phi': [False, 0.0],
            'SH Coeff': [False, {}],
            'SHShow': False,
            'PFhkl': [0, 0, 1],
            'PFxyz': [0, 0, 1],
            'PlotType': 'Pole figure'
        }
        shNcof = 0
        S = 1
        NPhas = []
        Expr = [{}, {}, {}, {}, {}, {}, {}, {},
                {}]  # GSAS can have at most 9 phases
        for line, S in enumerate(filepointer):
            self.errors = 'Error reading at line ' + str(line + 1)
            if 'EXPR NPHAS' in S[:12]:
                NPhas = S[12:-1].split()
            if 'CRS' in S[:3]:
                N = int(S[3:4]) - 1
                Expr[N][S[:12]] = S[12:-1]
        PNames = []
        if not NPhas:
            raise self.ImportException("No EXPR NPHAS record found")
        self.errors = 'Error interpreting file'
        for n, N in enumerate(NPhas):
            if N != '0':
                result = n
                key = 'CRS' + str(n + 1) + '    PNAM'
                PNames.append(Expr[n][key])
        if len(PNames) == 0:
            raise self.ImportException("No phases found")
        elif len(PNames) > 1:
            dlg = wx.SingleChoiceDialog(G2frame, 'Which phase to read?',
                                        'Read phase data', PNames,
                                        wx.CHOICEDLG_STYLE)
            try:
                if dlg.ShowModal() == wx.ID_OK:
                    result = dlg.GetSelection(
                    )  # I think this breaks is there are skipped phases. Cant this happen?
            finally:
                dlg.Destroy()
        EXPphase = Expr[result]
        keyList = list(EXPphase.keys())
        keyList.sort()
        SGData = {}
        MPtype = ''
        if NPhas[result] == '1':
            Ptype = 'nuclear'
        elif NPhas[result] == '2':
            Ptype = 'nuclear'
            MPtype = 'magnetic'
            MagDmin = 1.0
        elif NPhas[result] == '3':
            Ptype = 'magnetic'
            MagDmin = 1.0
        elif NPhas[result] == '4':
            Ptype = 'macromolecular'
        elif NPhas[result] == '10':
            Ptype = 'Pawley'
        else:
            raise self.ImportException("Phase type not recognized")

        for key in keyList:
            if 'PNAM' in key:
                PhaseName = EXPphase[key].strip()
            elif 'ABC   ' in key:
                abc = [
                    float(EXPphase[key][:10]),
                    float(EXPphase[key][10:20]),
                    float(EXPphase[key][20:30])
                ]
            elif 'ANGLES' in key:
                angles = [
                    float(EXPphase[key][:10]),
                    float(EXPphase[key][10:20]),
                    float(EXPphase[key][20:30])
                ]
            elif 'SG SYM' in key:
                SpGrp = EXPphase[key][:15].strip()
                E, SGData = G2spc.SpcGroup(SpGrp)
                if E:
                    SGData = G2obj.P1SGData  # P 1 -- unlikely to need this!
                    self.warnings += '\nThe GSAS space group was not interpreted(!) and has been set to "P 1".'
                    self.warnings += "Change this in phase's General tab."
            elif 'SPNFLP' in key:
                SpnFlp = np.array(
                    [int(float(s)) for s in EXPphase[key].split()])
                SpnFlp = np.where(SpnFlp == 0, 1, SpnFlp)
                SpnFlp = [
                    1,
                ] + list(SpnFlp)
                if SGData['SpGrp'][0] in ['A', 'B', 'C', 'I', 'R', 'F']:
                    SpnFlp = list(SpnFlp) + [1, 1, 1, 1]
            elif 'MXDSTR' in key:
                MagDmin = float(EXPphase[key][:10])
            elif 'OD    ' in key:
                SHdata = EXPphase[key].split()  # may not have all 9 values
                SHvals = 9 * [0]
                for i in range(9):
                    try:
                        float(SHdata[i])
                        SHvals[i] = SHdata[i]
                    except:
                        pass
                textureData['Order'] = int(SHvals[0])
                textureData['Model'] = shModels[int(SHvals[2])]
                textureData['Sample omega'] = [False, float(SHvals[6])]
                textureData['Sample chi'] = [False, float(SHvals[7])]
                textureData['Sample phi'] = [False, float(SHvals[8])]
                shNcof = int(SHvals[1])
        Volume = G2lat.calc_V(G2lat.cell2A(abc + angles))

        Atoms = []
        MAtoms = []
        Bmat = G2lat.cell2AB(abc + angles)[1]
        if Ptype == 'macromolecular':
            for key in keyList:
                if 'AT' in key[6:8]:
                    S = EXPphase[key]
                    Atom = [
                        S[56:60].strip(), S[50:54].strip().upper(), S[54:56],
                        S[46:51].strip(), S[:8].strip().capitalize(), '',
                        float(S[16:24]),
                        float(S[24:32]),
                        float(S[32:40]),
                        float(S[8:16]), '1', 1, 'I',
                        float(S[40:46]), 0, 0, 0, 0, 0, 0
                    ]
                    XYZ = Atom[6:9]
                    Atom[10], Atom[11] = G2spc.SytSym(XYZ, SGData)[:2]
                    Atom.append(ran.randint(0, sys.maxsize))
                    Atoms.append(Atom)
        else:
            for key in keyList:
                if 'AT' in key:
                    if key[11:] == 'A':
                        S = EXPphase[key]
                    elif key[11:] == 'B':
                        S1 = EXPphase[key]
                        Atom = [
                            S[50:58].strip(), S[:10].strip().capitalize(), '',
                            float(S[10:20]),
                            float(S[20:30]),
                            float(S[30:40]),
                            float(S[40:50]), '',
                            int(S[60:62]), S1[62:63]
                        ]
                        #float(S[40:50]),'',int(S[60:62]),S1[130:131]]
                        if Atom[9] == 'I':
                            Atom += [float(S1[0:10]), 0., 0., 0., 0., 0., 0.]
                        elif Atom[9] == 'A':
                            Atom += [
                                0.0,
                                float(S1[0:10]),
                                float(S1[10:20]),
                                float(S1[20:30]),
                                float(S1[30:40]),
                                float(S1[40:50]),
                                float(S1[50:60])
                            ]
                        else:
                            print('Error in line with key: ' + key)
                            Atom += [0., 0., 0., 0., 0., 0., 0.]
                        XYZ = Atom[3:6]
                        Atom[7], Atom[8] = G2spc.SytSym(XYZ, SGData)[:2]
                        Atom.append(ran.randint(0, sys.maxsize))
                        Atoms.append(Atom)
                    elif key[11:] == 'M' and key[6:8] == 'AT':
                        S = EXPphase[key]
                        mom = np.array(
                            [float(S[:10]),
                             float(S[10:20]),
                             float(S[20:30])])
                        mag = np.sqrt(np.sum(mom**2))
                        mom = np.inner(Bmat, mom) * mag
                        MAtoms.append(Atom)
                        MAtoms[-1] = Atom[:7] + list(mom) + Atom[7:]

        if shNcof:
            shCoef = {}
            nRec = [i + 1 for i in range((shNcof - 1) // 6 + 1)]
            for irec in nRec:
                ODkey = keyList[0][:6] + 'OD' + '%3dA' % (irec)
                indx = EXPphase[ODkey].split()
                ODkey = ODkey[:-1] + 'B'
                vals = EXPphase[ODkey].split()
                for i, val in enumerate(vals):
                    key = 'C(%s,%s,%s)' % (indx[3 * i], indx[3 * i + 1],
                                           indx[3 * i + 2])
                    shCoef[key] = float(val)
            textureData['SH Coeff'] = [False, shCoef]

        if not SGData:
            raise self.ImportException("No space group found in phase")
        if not abc:
            raise self.ImportException("No cell lengths found in phase")
        if not angles:
            raise self.ImportException("No cell angles found in phase")
        if not Atoms:
            raise self.ImportException("No atoms found in phase")

        self.Phase['General'].update({
            'Type':
            Ptype,
            'Name':
            PhaseName,
            'Cell': [
                False,
            ] + abc + angles + [
                Volume,
            ],
            'SGData':
            SGData
        })
        if MPtype == 'magnetic':
            self.MPhase['General'].update({
                'Type':
                'magnetic',
                'Name':
                PhaseName + ' mag',
                'Cell': [
                    False,
                ] + abc + angles + [
                    Volume,
                ],
                'SGData':
                SGData
            })
        else:
            self.MPhase = None

        if Ptype == 'macromolecular':
            self.Phase['General']['AtomPtrs'] = [6, 4, 10, 12]
            self.Phase['Atoms'] = Atoms
        elif Ptype == 'magnetic':
            self.Phase['General']['AtomPtrs'] = [3, 1, 10, 12]
            self.Phase['General']['SGData']['SGSpin'] = SpnFlp
            self.Phase['General']['MagDmin'] = MagDmin
            self.Phase['Atoms'] = MAtoms
        else:  #nuclear
            self.Phase['General']['AtomPtrs'] = [3, 1, 7, 9]
            self.Phase['General']['SH Texture'] = textureData
            self.Phase['Atoms'] = Atoms
        if MPtype == 'magnetic':
            self.MPhase['General']['AtomPtrs'] = [3, 1, 10, 12]
            self.MPhase['General']['SGData']['SGSpin'] = SpnFlp
            self.MPhase['General']['MagDmin'] = MagDmin
            self.MPhase['Atoms'] = MAtoms
Example #11
0
 def ReadPDBPhase(self,filename,parent=None):
     '''Read a phase from a PDB file.
     '''
     EightPiSq = 8.*math.pi**2
     self.errors = 'Error opening file'
     file = open(filename, 'Ur')
     Phase = {}
     Title = ''
     Compnd = ''
     Atoms = []
     A = np.zeros(shape=(3,3))
     S = file.readline()
     line = 1
     SGData = None
     cell = None
     while S:
         self.errors = 'Error reading at line '+str(line)
         Atom = []
         if 'TITLE' in S[:5]:
             Title = S[10:72].strip()
         elif 'COMPND    ' in S[:10]:
             Compnd = S[10:72].strip()
         elif 'CRYST' in S[:5]:
             abc = S[7:34].split()
             angles = S[34:55].split()
             cell=[float(abc[0]),float(abc[1]),float(abc[2]),
                 float(angles[0]),float(angles[1]),float(angles[2])]
             Volume = G2lat.calc_V(G2lat.cell2A(cell))
             AA,AB = G2lat.cell2AB(cell)
             SpGrp = S[55:65]
             E,SGData = G2spc.SpcGroup(SpGrp)
             # space group processing failed, try to look up name in table
             if E:
                 SpGrpNorm = G2spc.StandardizeSpcName(SpGrp)
                 if SpGrpNorm:
                     E,SGData = G2spc.SpcGroup(SpGrpNorm)
             while E:
                 print G2spc.SGErrors(E)
                 dlg = wx.TextEntryDialog(parent,
                     SpGrp[:-1]+' is invalid \nN.B.: make sure spaces separate axial fields in symbol',
                     'ERROR in space group symbol','',style=wx.OK)
                 if dlg.ShowModal() == wx.ID_OK:
                     SpGrp = dlg.GetValue()
                     E,SGData = G2spc.SpcGroup(SpGrp)
                 else:
                     SGData = G2IO.SGData # P 1
                     self.warnings += '\nThe space group was not interpreted and has been set to "P 1".'
                     self.warnings += "Change this in phase's General tab."            
                 dlg.Destroy()
             SGlines = G2spc.SGPrint(SGData)
             for l in SGlines: print l
         elif 'SCALE' in S[:5]:
             V = S[10:41].split()
             A[int(S[5])-1] = [float(V[0]),float(V[1]),float(V[2])]
         elif 'ATOM' in S[:4] or 'HETATM' in S[:6]:
             if not SGData:
                 self.warnings += '\nThe space group was not read before atoms and has been set to "P 1". '
                 self.warnings += "Change this in phase's General tab."
                 SGData = G2IO.SGData # P 1
             XYZ = [float(S[31:39]),float(S[39:47]),float(S[47:55])]
             XYZ = np.inner(AB,XYZ)
             XYZ = np.where(abs(XYZ)<0.00001,0,XYZ)
             SytSym,Mult = G2spc.SytSym(XYZ,SGData)
             Uiso = float(S[61:67])/EightPiSq
             Type = S[12:14].lower()
             if Type[0] in '123456789':
                 Type = Type[1:]
             Atom = [S[22:27].strip(),S[17:20].upper(),S[20:22],
                 S[12:17].strip(),Type.strip().capitalize(),'',XYZ[0],XYZ[1],XYZ[2],
                 float(S[55:61]),SytSym,Mult,'I',Uiso,0,0,0,0,0,0]
             S = file.readline()
             line += 1
             if 'ANISOU' in S[:6]:
                 Uij = S[30:72].split()
                 Uij = [float(Uij[0])/10000.,float(Uij[1])/10000.,float(Uij[2])/10000.,
                     float(Uij[3])/10000.,float(Uij[4])/10000.,float(Uij[5])/10000.]
                 Atom = Atom[:14]+Uij
                 Atom[12] = 'A'
             Atom.append(ran.randint(0,sys.maxint))
             Atoms.append(Atom)
         S = file.readline()
         line += 1
     file.close()
     self.errors = 'Error after read complete'
     if Title:
         PhaseName = Title
     elif Compnd:
         PhaseName = Compnd
     else:
         PhaseName = 'None'
     if not SGData:
         raise self.ImportException("No space group (CRYST entry) found")
     if not cell:
         raise self.ImportException("No cell (CRYST entry) found")
     Phase = G2IO.SetNewPhase(Name=PhaseName,SGData=SGData,cell=cell+[Volume,])
     Phase['General']['Type'] = 'macromolecular'
     Phase['General']['AtomPtrs'] = [6,4,10,12]
     Phase['Atoms'] = Atoms
     return Phase
Example #12
0
 def ReadJANAPhase(self,filename,parent=None):
     '''Read a phase from a JANA2006 m50 & m40 files.
     '''
     self.errors = 'Error opening file'
     file = open(filename, 'Ur') #contains only cell & spcgroup
     Phase = {}
     Title = os.path.basename(filename)
     Compnd = ''
     Type = 'nuclear'
     Atoms = []
     Atypes = []
     SuperVec = [[0,0,.1],False,4]
     S = file.readline()
     line = 1
     SGData = None
     SuperSg = ''
     cell = None
     nqi = 0
     while S:
         self.errors = 'Error reading at line '+str(line)
         if 'title' in S and S != 'title\n':
             Title = S.split()[1]
         elif 'cell' in S[:4]:
             cell = S[5:].split()
             cell=[float(cell[0]),float(cell[1]),float(cell[2]),
                 float(cell[3]),float(cell[4]),float(cell[5])]
             Volume = G2lat.calc_V(G2lat.cell2A(cell))
         elif 'spgroup' in S:
             if 'X' in S:
                 raise self.ImportException("Supersymmetry "+S+" too high; GSAS-II limited to (3+1) supersymmetry")            
             SpGrp = S.split()[1]
             SuperSg = ''
             if '(' in SpGrp:    #supercell symmetry - split in 2
                 SuperStr = SpGrp.split('(')
                 SpGrp = SuperStr[0]
                 SuperSg = '('+SuperStr[1]
             SpGrpNorm = G2spc.StandardizeSpcName(SpGrp)
             E,SGData = G2spc.SpcGroup(SpGrpNorm)
             # space group processing failed, try to look up name in table
             while E:
                 print G2spc.SGErrors(E)
                 dlg = wx.TextEntryDialog(parent,
                     SpGrp[:-1]+' is invalid \nN.B.: make sure spaces separate axial fields in symbol',
                     'ERROR in space group symbol','',style=wx.OK)
                 if dlg.ShowModal() == wx.ID_OK:
                     SpGrp = dlg.GetValue()
                     E,SGData = G2spc.SpcGroup(SpGrp)
                 else:
                     SGData = G2IO.SGData # P 1
                     self.warnings += '\nThe space group was not interpreted and has been set to "P 1".'
                     self.warnings += "Change this in phase's General tab."            
                 dlg.Destroy()
             SGlines = G2spc.SGPrint(SGData)
         elif 'qi' in S[:2]:
             if nqi:
                 raise self.ImportException("Supersymmetry too high; GSAS-II limited to (3+1) supersymmetry")            
             Type = 'modulated'
             vec = S.split()[1:]
             SuperVec = [[float(vec[i]) for i in range(3)],False,4]
             nqi += 1
         elif 'atom' in S[:4]:
             Atypes.append(S.split()[1])
         S = file.readline()
         line += 1
     file.close()
     #read atoms from m40 file
     if not SGData:
         self.warnings += '\nThe space group was not read before atoms and has been set to "P 1". '
         self.warnings += "Change this in phase's General tab."
         SGData = G2IO.SGData # P 1
     waveTypes = ['Fourier','Sawtooth','ZigZag',]
     filename2 = os.path.splitext(filename)[0]+'.m40'
     file2 = open(filename2,'Ur')
     S = file2.readline()
     line = 1
     self.errors = 'Error reading at line '+str(line)
     nAtoms = int(S.split()[0])
     for i in range(4):
         S = file2.readline()            
     for i in range(nAtoms):
         S1 = file2.readline()
         S1N = S1.split()[-3:]   # no. occ, no. pos waves, no. ADP waves
         S1N = [int(i) for i in S1N]
         S1T = list(S1[60:63])
         waveType = waveTypes[int(S1T[1])]
         crenelType = ''
         Spos = []
         Sadp = []
         Sfrac = []
         Smag = []
         XYZ = [float(S1[27:36]),float(S1[36:45]),float(S1[45:54])]
         SytSym,Mult = G2spc.SytSym(XYZ,SGData)
         aType = Atypes[int(S1[9:11])-1]
         Name = S1[:8].strip()
         if S1[11:15].strip() == '1':
             S2 = file2.readline()
             Uiso = float(S2[:9])
             Uij = [0,0,0,0,0,0]
             IA = 'I'
         elif S1[11:15].strip() == '2':
             S2 = file2.readline()
             IA = 'A'
             Uiso = 0.
             Uij = [float(S2[:9]),float(S2[9:18]),float(S2[18:27]),
                 float(S2[27:36]),float(S2[36:45]),float(S2[45:54])]
         for i in range(S1N[0]):
             if not i:
                 FS = file2.readline()
                 Sfrac.append(FS[:9])    #'O' or 'delta' = 'length' for crenel
                 if int(S1T[0]):  #"", "Legendre" or "Xharm" in 18:27 for "crenel"!
                     waveType = 'Crenel/Fourier' #all waves 'Fourier' no other choice
                     crenelType = FS[18:27]
             Sfrac.append(file2.readline()[:18]) #if not crenel = Osin & Ocos
             # else Osin & Ocos except last one is X40 = 'Center'
         for i in range(S1N[1]):  
             Spos.append(file2.readline()[:54])
         for i in range(S1N[2]):
             Sadp.append(file2.readline()[:54]+file2.readline())
         if sum(S1N):    #if any waves: skip mystery line?
             file2.readline()
         for i,it in enumerate(Sfrac):
             print i,it
             if not i:
                 if 'Crenel' in waveType:
                     vals = [float(it),float(Sfrac[-1][:9])]
                 else:
                     vals = [float(it),]
             else:
                 vals = [float(it[:9]),float(it[9:18])]
             if 'Crenel' in waveType and i == len(Sfrac)-1:
                 del Sfrac[-1]
                 break                
             Sfrac[i] = [vals,False]
             print Sfrac[i]
         for i,it in enumerate(Spos):
             if waveType in ['ZigZag','Sawtooth'] and not i:
                 vals = [float(it[:9]),float(it[9:18]),float(it[18:27]),float(it[27:36])]
             else:
                 vals = [float(it[:9]),float(it[9:18]),float(it[18:27]),float(it[27:36]),float(it[36:45]),float(it[45:54])]
             Spos[i] = [vals,False]
         for i,it in enumerate(Sadp):
             vals = [float(it[:9]),float(it[9:18]),float(it[18:27]),float(it[27:36]),float(it[36:45]),float(it[45:54]),
                 float(it[54:63]),float(it[63:72]),float(it[72:81]),float(it[81:90]),float(it[90:99]),float(it[99:108])]                
             Sadp[i] = [vals,False]
         Atom = [Name,aType,'',XYZ[0],XYZ[1],XYZ[2],1.0,SytSym,Mult,IA,Uiso]
         Atom += Uij
         Atom.append(ran.randint(0,sys.maxint))
         Atom.append([])
         Atom.append([])
         Atom.append({'SS1':{'waveType':waveType,'crenelType':crenelType,'Sfrac':Sfrac,'Spos':Spos,'Sadp':Sadp,'Smag':Smag}})    #SS2 is for (3+2), etc.
         Atoms.append(Atom)
     file2.close()
     self.errors = 'Error after read complete'
     if not SGData:
         raise self.ImportException("No space group (spcgroup entry) found")
     if not cell:
         raise self.ImportException("No cell found")
     Phase = G2IO.SetNewPhase(Name=Title,SGData=SGData,cell=cell+[Volume,])
     Phase['General']['Type'] = Type
     Phase['General']['Super'] = nqi
     Phase['General']['SuperVec'] = SuperVec
     Phase['General']['SuperSg'] = SuperSg
     if SuperSg:
         Phase['General']['SSGData'] = G2spc.SSpcGroup(SGData,SuperSg)[1]
     Phase['General']['AtomPtrs'] = [3,1,7,9]
     Phase['Atoms'] = Atoms
     return Phase
Example #13
0
def PrintDistAngle(DisAglCtls,DisAglData,out=sys.stdout):
    '''Print distances and angles

    :param dict DisAglCtls: contains distance/angle radii usually defined using
       :func:`GSASIIctrlGUI.DisAglDialog`
    :param dict DisAglData: contains phase data:
       Items 'OrigAtoms' and 'TargAtoms' contain the atoms to be used
       for distance/angle origins and atoms to be used as targets.
       Item 'SGData' has the space group information (see :ref:`Space Group object<SGData_table>`)
    :param file out: file object for output. Defaults to sys.stdout.
    '''
    def MyPrint(s):
        out.write(s+'\n')
        # print(s,file=out) # use in Python 3

    def ShowBanner(name):
        MyPrint(80*'*')
        MyPrint('   Interatomic Distances and Angles for phase '+name)
        MyPrint((80*'*')+'\n')

    ShowBanner(DisAglCtls['Name'])
    SGData = DisAglData['SGData']
    SGtext,SGtable = G2spc.SGPrint(SGData)
    for line in SGtext: MyPrint(line)
    if len(SGtable) > 1:
        for i,item in enumerate(SGtable[::2]):
            if 2*i+1 == len(SGtable):
                line = ' %s'%(item.ljust(30))
            else:
                line = ' %s %s'%(item.ljust(30),SGtable[2*i+1].ljust(30))
            MyPrint(line)
    else:
        MyPrint(' ( 1)    %s'%(SGtable[0])) #triclinic case
    Cell = DisAglData['Cell']

    Amat,Bmat = G2lat.cell2AB(Cell[:6])
    covData = {}
    if 'covData' in DisAglData:
        covData = DisAglData['covData']
        pfx = str(DisAglData['pId'])+'::'
        A = G2lat.cell2A(Cell[:6])
        cellSig = G2stIO.getCellEsd(pfx,SGData,A,covData)
        names = [' a = ',' b = ',' c = ',' alpha = ',' beta = ',' gamma = ',' Volume = ']
        valEsd = [G2mth.ValEsd(Cell[i],cellSig[i],True) for i in range(7)]
        line = '\n Unit cell:'
        for name,vals in zip(names,valEsd):
            line += name+vals
        MyPrint(line)
    else:
        MyPrint('\n Unit cell: a = '+('%.5f'%Cell[0])+' b = '+('%.5f'%Cell[1])+' c = '+('%.5f'%Cell[2])+
            ' alpha = '+('%.3f'%Cell[3])+' beta = '+('%.3f'%Cell[4])+' gamma = '+
            ('%.3f'%Cell[5])+' Volume = '+('%.3f'%Cell[6]))

    AtomLabels,DistArray,AngArray = RetDistAngle(DisAglCtls,DisAglData)
    origAtoms = DisAglData['OrigAtoms']
    for Oatom in origAtoms:
        i = Oatom[0]
        Dist = DistArray[i]
        nDist = len(Dist)
        angles = np.zeros((nDist,nDist))
        angsig = np.zeros((nDist,nDist))
        for k,j,tup in AngArray[i]:
            angles[k][j],angsig[k][j] = angles[j][k],angsig[j][k] = tup
        line = ''
        for i,x in enumerate(Oatom[3:6]):
            line += ('%12.5f'%x).rstrip('0')
        MyPrint('\n Distances & angles for '+Oatom[1]+' at '+line.rstrip())
        MyPrint(80*'*')
        line = ''
        for dist in Dist[:-1]:
            line += '%12s'%(AtomLabels[dist[0]].center(12))
        MyPrint('  To       cell +(sym. op.)      dist.  '+line.rstrip())
        for i,dist in enumerate(Dist):
            line = ''
            for j,angle in enumerate(angles[i][0:i]):
                sig = angsig[i][j]
                if angle:
                    if sig:
                        line += '%12s'%(G2mth.ValEsd(angle,sig,True).center(12))
                    else:
                        val = '%.3f'%(angle)
                        line += '%12s'%(val.center(12))
                else:
                    line += 12*' '
            if dist[4]:            #sig exists!
                val = G2mth.ValEsd(dist[3],dist[4])
            else:
                val = '%8.4f'%(dist[3])
            tunit = '[%2d%2d%2d]'% dist[1]
            MyPrint(('  %8s%10s+(%4d) %12s'%(AtomLabels[dist[0]].ljust(8),tunit.ljust(10),dist[2],val.center(12)))+line.rstrip())
Example #14
0
 def ReadJANAPhase(self, filename, parent=None):
     '''Read a phase from a JANA2006 m50 & m40 files.
     '''
     self.errors = 'Error opening file'
     file = open(filename, 'Ur')  #contains only cell & spcgroup
     Phase = {}
     Title = os.path.basename(filename)
     Compnd = ''
     Type = 'nuclear'
     Atoms = []
     Atypes = []
     SuperVec = [[0, 0, .1], False, 4]
     S = file.readline()
     line = 1
     SGData = None
     SuperSg = ''
     cell = None
     nqi = 0
     while S:
         self.errors = 'Error reading at line ' + str(line)
         if 'title' in S and S != 'title\n':
             Title = S.split()[1]
         elif 'cell' in S[:4]:
             cell = S[5:].split()
             cell = [
                 float(cell[0]),
                 float(cell[1]),
                 float(cell[2]),
                 float(cell[3]),
                 float(cell[4]),
                 float(cell[5])
             ]
             Volume = G2lat.calc_V(G2lat.cell2A(cell))
         elif 'spgroup' in S:
             if 'X' in S:
                 raise self.ImportException(
                     "Supersymmetry " + S +
                     " too high; GSAS-II limited to (3+1) supersymmetry")
             SpGrp = S.split()[1]
             SuperSg = ''
             if '(' in SpGrp:  #supercell symmetry - split in 2
                 SuperStr = SpGrp.split('(')
                 SpGrp = SuperStr[0]
                 SuperSg = '(' + SuperStr[1]
             SpGrpNorm = G2spc.StandardizeSpcName(SpGrp)
             E, SGData = G2spc.SpcGroup(SpGrpNorm)
             # space group processing failed, try to look up name in table
             while E:
                 print G2spc.SGErrors(E)
                 dlg = wx.TextEntryDialog(
                     parent,
                     SpGrp[:-1] +
                     ' is invalid \nN.B.: make sure spaces separate axial fields in symbol',
                     'ERROR in space group symbol',
                     '',
                     style=wx.OK)
                 if dlg.ShowModal() == wx.ID_OK:
                     SpGrp = dlg.GetValue()
                     E, SGData = G2spc.SpcGroup(SpGrp)
                 else:
                     SGData = G2IO.SGData  # P 1
                     self.warnings += '\nThe space group was not interpreted and has been set to "P 1".'
                     self.warnings += "Change this in phase's General tab."
                 dlg.Destroy()
             SGlines = G2spc.SGPrint(SGData)
         elif 'qi' in S[:2]:
             if nqi:
                 raise self.ImportException(
                     "Supersymmetry too high; GSAS-II limited to (3+1) supersymmetry"
                 )
             Type = 'modulated'
             vec = S.split()[1:]
             SuperVec = [[float(vec[i]) for i in range(3)], False, 4]
             nqi += 1
         elif 'atom' in S[:4]:
             Atypes.append(S.split()[1])
         S = file.readline()
         line += 1
     file.close()
     #read atoms from m40 file
     if not SGData:
         self.warnings += '\nThe space group was not read before atoms and has been set to "P 1". '
         self.warnings += "Change this in phase's General tab."
         SGData = G2IO.SGData  # P 1
     waveTypes = [
         'Fourier',
         'Sawtooth',
         'ZigZag',
     ]
     filename2 = os.path.splitext(filename)[0] + '.m40'
     file2 = open(filename2, 'Ur')
     S = file2.readline()
     line = 1
     self.errors = 'Error reading at line ' + str(line)
     nAtoms = int(S.split()[0])
     for i in range(4):
         S = file2.readline()
     for i in range(nAtoms):
         S1 = file2.readline()
         S1N = S1.split()[-3:]  # no. occ, no. pos waves, no. ADP waves
         S1N = [int(i) for i in S1N]
         S1T = list(S1[60:63])
         waveType = waveTypes[int(S1T[1])]
         crenelType = ''
         Spos = []
         Sadp = []
         Sfrac = []
         Smag = []
         XYZ = [float(S1[27:36]), float(S1[36:45]), float(S1[45:54])]
         SytSym, Mult = G2spc.SytSym(XYZ, SGData)
         aType = Atypes[int(S1[9:11]) - 1]
         Name = S1[:8].strip()
         if S1[11:15].strip() == '1':
             S2 = file2.readline()
             Uiso = float(S2[:9])
             Uij = [0, 0, 0, 0, 0, 0]
             IA = 'I'
         elif S1[11:15].strip() == '2':
             S2 = file2.readline()
             IA = 'A'
             Uiso = 0.
             Uij = [
                 float(S2[:9]),
                 float(S2[9:18]),
                 float(S2[18:27]),
                 float(S2[27:36]),
                 float(S2[36:45]),
                 float(S2[45:54])
             ]
         for i in range(S1N[0]):
             if not i:
                 FS = file2.readline()
                 Sfrac.append(FS[:9])  #'O' or 'delta' = 'length' for crenel
                 if int(
                         S1T[0]
                 ):  #"", "Legendre" or "Xharm" in 18:27 for "crenel"!
                     waveType = 'Crenel/Fourier'  #all waves 'Fourier' no other choice
                     crenelType = FS[18:27]
             Sfrac.append(
                 file2.readline()[:18])  #if not crenel = Osin & Ocos
             # else Osin & Ocos except last one is X40 = 'Center'
         for i in range(S1N[1]):
             Spos.append(file2.readline()[:54])
         for i in range(S1N[2]):
             Sadp.append(file2.readline()[:54] + file2.readline())
         if sum(S1N):  #if any waves: skip mystery line?
             file2.readline()
         for i, it in enumerate(Sfrac):
             print i, it
             if not i:
                 if 'Crenel' in waveType:
                     vals = [float(it), float(Sfrac[-1][:9])]
                 else:
                     vals = [
                         float(it),
                     ]
             else:
                 vals = [float(it[:9]), float(it[9:18])]
             if 'Crenel' in waveType and i == len(Sfrac) - 1:
                 del Sfrac[-1]
                 break
             Sfrac[i] = [vals, False]
             print Sfrac[i]
         for i, it in enumerate(Spos):
             if waveType in ['ZigZag', 'Sawtooth'] and not i:
                 vals = [
                     float(it[:9]),
                     float(it[9:18]),
                     float(it[18:27]),
                     float(it[27:36])
                 ]
             else:
                 vals = [
                     float(it[:9]),
                     float(it[9:18]),
                     float(it[18:27]),
                     float(it[27:36]),
                     float(it[36:45]),
                     float(it[45:54])
                 ]
             Spos[i] = [vals, False]
         for i, it in enumerate(Sadp):
             vals = [
                 float(it[:9]),
                 float(it[9:18]),
                 float(it[18:27]),
                 float(it[27:36]),
                 float(it[36:45]),
                 float(it[45:54]),
                 float(it[54:63]),
                 float(it[63:72]),
                 float(it[72:81]),
                 float(it[81:90]),
                 float(it[90:99]),
                 float(it[99:108])
             ]
             Sadp[i] = [vals, False]
         Atom = [
             Name, aType, '', XYZ[0], XYZ[1], XYZ[2], 1.0, SytSym, Mult, IA,
             Uiso
         ]
         Atom += Uij
         Atom.append(ran.randint(0, sys.maxint))
         Atom.append([])
         Atom.append([])
         Atom.append({
             'SS1': {
                 'waveType': waveType,
                 'crenelType': crenelType,
                 'Sfrac': Sfrac,
                 'Spos': Spos,
                 'Sadp': Sadp,
                 'Smag': Smag
             }
         })  #SS2 is for (3+2), etc.
         Atoms.append(Atom)
     file2.close()
     self.errors = 'Error after read complete'
     if not SGData:
         raise self.ImportException("No space group (spcgroup entry) found")
     if not cell:
         raise self.ImportException("No cell found")
     Phase = G2IO.SetNewPhase(Name=Title,
                              SGData=SGData,
                              cell=cell + [
                                  Volume,
                              ])
     Phase['General']['Type'] = Type
     Phase['General']['Super'] = nqi
     Phase['General']['SuperVec'] = SuperVec
     Phase['General']['SuperSg'] = SuperSg
     if SuperSg:
         Phase['General']['SSGData'] = G2spc.SSpcGroup(SGData, SuperSg)[1]
     Phase['General']['AtomPtrs'] = [3, 1, 7, 9]
     Phase['Atoms'] = Atoms
     return Phase
Example #15
0
 def ReadINSPhase(self, filename, parent=None):
     '''Read a phase from a INS file.
     '''
     Shelx = [
         'TITL', 'CELL', 'ZERR', 'LATT', 'SYMM', 'SFAC', 'DISP', 'UNIT',
         'LAUE', 'EADP', 'MORE', 'TIME', 'HKLF', 'OMIT', 'SHEL', 'BASF',
         'TWIN', 'EXTI', 'SWAT', 'HOPE', 'MERG', 'SPEC', 'RESI', 'RTAB',
         'MPLA', 'HFIX', 'MOVE', 'ANIS', 'AFIX', 'FRAG', 'FEND', 'EXYZ',
         'EDAP', 'EQIV', 'CONN', 'PART', 'BIND', 'FREE', 'DFIX', 'DANG',
         'BUMP', 'SAME', 'SADI', 'CHIV', 'FLAT', 'DELU', 'SIMU', 'DEFS',
         'ISOR', 'NCSY', 'SUMP', 'L.S.', 'CGLS', 'BLOC', 'DAMP', 'STIR',
         'WGHT', 'FVAR', 'BOND', 'CONF', 'MPLA', 'HTAB', 'LIST', 'ACTA',
         'SIZE', 'TEMP', 'WPDB', 'FMAP', 'GRID', 'PLAN', 'MOLE'
     ]
     self.errors = 'Error opening file'
     fp = open(filename, 'Ur')
     Phase = {}
     Title = ''
     Atoms = []
     aTypes = []
     S = fp.readline()
     line = 1
     SGData = None
     cell = None
     while S:
         if '!' in S:
             S = S.split('!')[0]
         self.errors = 'Error reading at line ' + str(line)
         Atom = []
         if 'TITL' in S[:4].upper():
             Title = S[4:72].strip()
         elif not S.strip():
             pass
         elif 'CELL' in S[:4].upper():
             cellRec = S.split()
             abc = cellRec[2:5]
             angles = cellRec[5:8]
             cell = [
                 float(abc[0]),
                 float(abc[1]),
                 float(abc[2]),
                 float(angles[0]),
                 float(angles[1]),
                 float(angles[2])
             ]
             Volume = G2lat.calc_V(G2lat.cell2A(cell))
             AA, AB = G2lat.cell2AB(cell)
             SGData = G2obj.P1SGData  # P 1
             self.warnings += '\nThe space group is not given in an ins file and has been set to "P 1".'
             self.warnings += "\nChange this in phase's General tab; NB: it might be in the Phase name."
         elif S[:4].upper() in 'SFAC':
             aTypes = S[4:].split()
             if 'H' in aTypes:
                 self.warnings += '\n\nHydrogen atoms found; consider replacing them with stereochemically tied ones'
                 self.warnings += '\nas Shelx constraints & HFIX commands are ignored.'
                 self.warnings += "\nDo 'Edit/Insert H atoms' in this phase's Atoms tab after deleting the old ones."
         elif S[0] == 'Q':
             pass
         elif '\x1a' in S[:4]:
             pass
         elif S[:3].upper() == 'REM':
             pass
         elif S[:3].upper() == 'END':
             pass
         elif S[:4].strip().upper(
         ) not in Shelx:  #this will find an atom record!
             AtRec = S.split()
             Atype = aTypes[int(AtRec[1]) - 1]
             Aname = AtRec[0]
             Afrac = abs(float(AtRec[5])) % 10.
             x, y, z = AtRec[2:5]
             XYZ = np.array([float(x), float(y), float(z)])
             XYZ = np.where(np.abs(XYZ) < 0.00001, 0, XYZ)
             SytSym, Mult = G2spc.SytSym(XYZ, SGData)[:2]
             if '=' not in S:
                 IA = 'I'
                 Uiso = float(AtRec[6])
                 if Uiso < 0. or Uiso > 1.0:
                     Uiso = 0.025
                 Uij = [0. for i in range(6)]
             else:
                 IA = 'A'
                 Uiso = 0.
                 Ustr = AtRec[6:8]
                 S = fp.readline()
                 if '!' in S:
                     S = S.split('!')[0]
                 AtRec = S.split()
                 line += 1
                 Ustr += AtRec
                 Uij = [float(Ustr[i]) for i in range(6)]
                 Uij = Uij[0:3] + [Uij[5], Uij[4], Uij[3]]
             Atom = [
                 Aname, Atype, '', XYZ[0], XYZ[1], XYZ[2], Afrac, SytSym,
                 Mult, IA, Uiso
             ]
             Atom += Uij
             Atom.append(ran.randint(0, sys.maxsize))
             Atoms.append(Atom)
         S = fp.readline()
         line += 1
     fp.close()
     self.errors = 'Error after read complete'
     Phase = G2obj.SetNewPhase(Name='ShelX phase',
                               SGData=SGData,
                               cell=cell + [
                                   Volume,
                               ])
     Phase['General']['Name'] = Title
     Phase['General']['Type'] = 'nuclear'
     Phase['General']['AtomPtrs'] = [3, 1, 7, 9]
     Phase['Atoms'] = Atoms
     return Phase
def findMV(peaks, controls, ssopt, Inst, dlg):
    def Val2Vec(vec, Vref, values):
        Vec = []
        i = 0
        for j, r in enumerate(Vref):
            if r:
                if values.size > 1:
                    Vec.append(max(-1., min(1.0, values[i])))
                else:
                    Vec.append(max(0.0, min(1.0, values)))
                i += 1
            else:
                Vec.append(vec[j])
        return np.array(Vec)

    def ZSSfunc(values,
                peaks,
                dmin,
                Inst,
                SGData,
                SSGData,
                vec,
                Vref,
                maxH,
                A,
                wave,
                Z,
                dlg=None):
        Vec = Val2Vec(vec, Vref, values)
        HKL = G2pwd.getHKLMpeak(dmin, Inst, SGData, SSGData, Vec, maxH, A)
        Peaks = np.array(IndexSSPeaks(peaks, HKL)[1]).T
        Qo = 1. / Peaks[-2]**2
        Qc = G2lat.calc_rDsqZSS(Peaks[4:8], A, Vec, Z, Peaks[0], wave)
        chi = np.sum((Qo - Qc)**2)
        if dlg:
            dlg.Pulse()
        return chi

    def TSSfunc(values,
                peaks,
                dmin,
                Inst,
                SGData,
                SSGData,
                vec,
                Vref,
                maxH,
                A,
                difC,
                Z,
                dlg=None):
        Vec = Val2Vec(vec, Vref, values)
        HKL = G2pwd.getHKLMpeak(dmin, Inst, SGData, SSGData, Vec, maxH, A)
        Peaks = np.array(IndexSSPeaks(peaks, HKL)[1]).T
        Qo = 1. / Peaks[-2]**2
        Qc = G2lat.calc_rDsqTSS(Peaks[4:8], A, Vec, Z, Peaks[0], difC)
        chi = np.sum((Qo - Qc)**2)
        if dlg:
            dlg.Pulse()
        return chi

    if 'T' in Inst['Type'][0]:
        difC = Inst['difC'][1]
    else:
        wave = G2mth.getWave(Inst)
    SGData = G2spc.SpcGroup(controls[13])[1]
    SSGData = G2spc.SSpcGroup(SGData, ssopt['ssSymb'])[1]
    A = G2lat.cell2A(controls[6:12])
    Z = controls[1]
    Vref = [True if x in ssopt['ssSymb'] else False for x in ['a', 'b', 'g']]
    values = []
    ranges = []
    dT = 0.01  #seems to be a good choice
    for v, r in zip(ssopt['ModVec'], Vref):
        if r:
            ranges += [
                slice(dT, 1. - dT, dT),
            ]  #NB: unique part for (00g) & (a0g); (abg)?
            values += [
                v,
            ]
    dmin = getDmin(peaks) - 0.005
    if 'T' in Inst['Type'][0]:
        result = so.brute(TSSfunc,
                          ranges,
                          finish=so.fmin_cg,
                          full_output=True,
                          args=(peaks, dmin, Inst, SGData, SSGData,
                                ssopt['ModVec'], Vref, 1, A, difC, Z, dlg))
    else:
        result = so.brute(ZSSfunc,
                          ranges,
                          finish=so.fmin_cg,
                          full_output=True,
                          args=(peaks, dmin, Inst, SGData, SSGData,
                                ssopt['ModVec'], Vref, 1, A, wave, Z, dlg))
    return Val2Vec(ssopt['ModVec'], Vref, result[0]), result
Example #17
0
 def Reader(self,filename,filepointer, ParentFrame=None, usedRanIdList=[], **unused):
     self.isodistort_warnings = ''
     self.Phase = G2IO.SetNewPhase(Name='new phase',SGData=G2IO.P1SGData) # create a new empty phase dict
     # make sure the ranId is really unique!
     while self.Phase['ranId'] in usedRanIdList:
         self.Phase['ranId'] = ran.randint(0,sys.maxint)
     returnstat = False
     cellitems = (
         '_cell_length_a','_cell_length_b','_cell_length_c',
         '_cell_angle_alpha','_cell_angle_beta','_cell_angle_gamma',)
     cellwaveitems = (
         '_cell_wave_vector_seq_id',
         '_cell_wave_vector_x','_cell_wave_vector_y','_cell_wave_vector_z')
     reqitems = (
          '_atom_site_fract_x',
          '_atom_site_fract_y',
          '_atom_site_fract_z',
         )
     phasenamefields = (
         '_chemical_name_common',
         '_pd_phase_name',
         '_chemical_formula_sum'
         )
     try:
         self.ShowBusy() # this can take a while
         try:
             cf = G2IO.ReadCIF(filename)
         except Exception as detail:
             self.errors = "Parse or reading of file failed in pyCifRW; check syntax of file in enCIFer or CheckCIF"
             return False
         finally:
             self.DoneBusy()
         # scan blocks for structural info
         self.errors = 'Error during scan of blocks for datasets'
         str_blklist = []
         for blk in cf.keys():
             for r in reqitems+cellitems:
                 if r not in cf[blk].keys():
                     break
             else:
                 str_blklist.append(blk)
         if not str_blklist:
             selblk = None # no block to choose
         elif len(str_blklist) == 1: # only one choice
             selblk = 0
         else:                       # choose from options
             choice = []
             for blknm in str_blklist:
                 choice.append('')
                 # accumumlate some info about this phase
                 choice[-1] += blknm + ': '
                 for i in phasenamefields: # get a name for the phase
                     name = cf[blknm].get(i).strip()
                     if name is None or name == '?' or name == '.':
                         continue
                     else:
                         choice[-1] += name.strip()[:20] + ', '
                         break
                 na = len(cf[blknm].get("_atom_site_fract_x"))
                 if na == 1:
                     choice[-1] += '1 atom'
                 else:
                     choice[-1] += ('%d' % nd) + ' atoms'
                 choice[-1] += ', cell: '
                 fmt = "%.2f,"
                 for i,key in enumerate(cellitems):
                     if i == 3: fmt = "%.f,"
                     if i == 5: fmt = "%.f"
                     choice[-1] += fmt % cif.get_number_with_esd(
                         cf[blknm].get(key))[0]
                 sg = cf[blknm].get("_symmetry_space_group_name_H-M",'')
                 if not sg: sg = cf[blknm].get("_space_group_name_H-M_alt",'')
                 if sg: choice[-1] += ', (' + sg.strip() + ')'
             selblk = self.PhaseSelector(
                 choice,
                 ParentFrame=ParentFrame,
                 title= 'Select a phase from one the CIF data_ blocks below',
                 size=(600,100)
                 )
         self.errors = 'Error during reading of selected block'
         if selblk is None:
             returnstat = False # no block selected or available
         else:
             blknm = str_blklist[selblk]
             blk = cf[str_blklist[selblk]]
             E = True
             Super = False
             SpGrp = blk.get("_symmetry_space_group_name_H-M",'')
             if not SpGrp:
                 SpGrp = blk.get("_space_group_name_H-M_alt",'')
             if not SpGrp:
                 sspgrp = blk.get("_space_group_ssg_name",'').split('(')
                 SpGrp = sspgrp[0]
                 SuperSg = '('+sspgrp[1].replace('\\','')
                 Super = True
                 SuperVec = [[0,0,.1],False,4]
             # try normalizing the space group, to see if we can pick the space group out of a table
             SpGrpNorm = G2spc.StandardizeSpcName(SpGrp)
             if SpGrpNorm:
                 E,SGData = G2spc.SpcGroup(SpGrpNorm)
             # nope, try the space group "out of the Box"
             if E and SpGrp:
                 E,SGData = G2spc.SpcGroup(SpGrp)
             if E:
                 if not SpGrp:
                     self.warnings += 'No space group name was found in the CIF.'
                     self.warnings += '\nThe space group has been set to "P 1". '
                     self.warnings += "Change this in phase's General tab."
                 else:
                     self.warnings += 'ERROR in space group symbol '+SpGrp
                     self.warnings += '\nThe space group has been set to "P 1". '
                     self.warnings += "Change this in phase's General tab."
                     self.warnings += '\nAre there spaces separating axial fields?\n\nError msg: '
                     self.warnings += G2spc.SGErrors(E)
                 SGData = G2IO.SGData # P 1
             self.Phase['General']['SGData'] = SGData
             # cell parameters
             cell = []
             for lbl in cellitems:
                 cell.append(cif.get_number_with_esd(blk[lbl])[0])
             Volume = G2lat.calc_V(G2lat.cell2A(cell))
             self.Phase['General']['Cell'] = [False,]+cell+[Volume,]
             # read in atoms
             self.errors = 'Error during reading of atoms'
             atomlbllist = [] # table to look up atom IDs
             atomloop = blk.GetLoop('_atom_site_label')
             atomkeys = [i.lower() for i in atomloop.keys()]
             if not blk.get('_atom_site_type_symbol'):
                 self.isodistort_warnings += '\nlack of atom types prevents ISODISTORT processing'
             if blk.get('_atom_site_aniso_label'):
                 anisoloop = blk.GetLoop('_atom_site_aniso_label')
                 anisokeys = [i.lower() for i in anisoloop.keys()]
             else:
                 anisoloop = None
                 anisokeys = []
             self.Phase['Atoms'] = []
             G2AtomDict = {  '_atom_site_type_symbol' : 1,
                             '_atom_site_label' : 0,
                             '_atom_site_fract_x' : 3,
                             '_atom_site_fract_y' : 4,
                             '_atom_site_fract_z' : 5,
                             '_atom_site_occupancy' : 6,
                             '_atom_site_aniso_u_11' : 11,
                             '_atom_site_aniso_u_22' : 12,
                             '_atom_site_aniso_u_33' : 13,
                             '_atom_site_aniso_u_12' : 14,
                             '_atom_site_aniso_u_13' : 15,
                             '_atom_site_aniso_u_23' : 16, }
             ranIdlookup = {}
             for aitem in atomloop:
                 atomlist = ['','','',0,0,0,1.0,'',0,'I',0.01,0,0,0,0,0,0,0]
                 atomlist[-1] = ran.randint(0,sys.maxint) # add a random Id
                 while atomlist[-1] in ranIdlookup:
                     atomlist[-1] = ran.randint(0,sys.maxint) # make it unique
                 for val,key in zip(aitem,atomkeys):
                     col = G2AtomDict.get(key)
                     if col >= 3:
                         atomlist[col] = cif.get_number_with_esd(val)[0]
                     elif col is not None:
                         atomlist[col] = val
                     elif key in ('_atom_site_thermal_displace_type',
                                '_atom_site_adp_type'):   #Iso or Aniso?
                         if val.lower() == 'uani':
                             atomlist[9] = 'A'
                     elif key == '_atom_site_u_iso_or_equiv':
                         atomlist[10] =cif.get_number_with_esd(val)[0]
                 if not atomlist[1] and atomlist[0]:
                     for i in range(2,0,-1):
                         typ = atomlist[0].strip()[:i]
                         if G2elem.CheckElement(typ):
                             atomlist[1] = typ
                         if not atomlist[1]: atomlist[1] = 'Xe'
                 ulbl = '_atom_site_aniso_label'
                 if  atomlist[9] == 'A' and atomlist[0] in blk.get(ulbl):
                     for val,key in zip(anisoloop.GetKeyedPacket(ulbl,atomlist[0]),
                                        anisokeys):
                         col = G2AtomDict.get(key)
                         if col:
                             atomlist[col] = cif.get_number_with_esd(val)[0]
                 atomlist[7],atomlist[8] = G2spc.SytSym(atomlist[3:6],SGData)
                 atomlist[1] = G2elem.FixValence(atomlist[1])
                 self.Phase['Atoms'].append(atomlist)
                 ranIdlookup[atomlist[0]] = atomlist[-1]
                 if atomlist[0] in atomlbllist:
                     self.warnings += ' ERROR: repeated atom label: '+atomlist[0]
                 else:
                     atomlbllist.append(atomlist[0])
             if len(atomlbllist) != len(self.Phase['Atoms']):
                 self.isodistort_warnings += '\nRepeated atom labels prevents ISODISTORT decode'
             for lbl in phasenamefields: # get a name for the phase
                 name = blk.get(lbl)
                 if name is None:
                     continue
                 name = name.strip()
                 if name == '?' or name == '.':
                     continue
                 else:
                     break
             else: # no name found, use block name for lack of a better choice
                 name = blknm
             self.Phase['General']['Name'] = name.strip()[:20]
             self.Phase['General']['Super'] = Super
             if Super:
                 self.Phase['General']['Type'] = 'modulated'
                 self.Phase['General']['SuperVec'] = SuperVec
                 self.Phase['General']['SuperSg'] = SuperSg
                 self.Phase['General']['SSGData'] = G2spc.SSpcGroup(SGData,SuperSg)[1]
             if not self.isodistort_warnings:
                 if blk.get('_iso_displacivemode_label') or blk.get('_iso_occupancymode_label'):
                     self.errors = "Error while processing ISODISTORT constraints"
                     self.ISODISTORT_proc(blk,atomlbllist,ranIdlookup)
             else:
                 self.warnings += self.isodistort_warnings
             returnstat = True
     except Exception as detail:
         self.errors += '\n  '+str(detail)
         print 'CIF error:',detail # for testing
         print sys.exc_info()[0] # for testing
         import traceback
         print traceback.format_exc()
         returnstat = False
     return returnstat
Example #18
0
def findMV(peaks, controls, ssopt, Inst, dlg):
    def Val2Vec(vec, Vref, values):
        Vec = []
        i = 0
        for j, r in enumerate(Vref):
            if r:
                if values.size > 1:
                    Vec.append(max(0.0, min(1.0, values[i])))
                else:
                    Vec.append(max(0.0, min(1.0, values)))
                i += 1
            else:
                Vec.append(vec[j])
        return np.array(Vec)

    def ZSSfunc(values,
                peaks,
                dmin,
                Inst,
                SGData,
                SSGData,
                vec,
                Vref,
                maxH,
                A,
                wave,
                Z,
                dlg=None):
        Vec = Val2Vec(vec, Vref, values)
        HKL = G2pwd.getHKLMpeak(dmin, Inst, SGData, SSGData, Vec, maxH, A)
        Peaks = np.array(IndexSSPeaks(peaks, HKL)[1]).T
        Qo = 1. / Peaks[-2]**2
        Qc = G2lat.calc_rDsqZSS(Peaks[4:8], A, Vec, Z, Peaks[0], wave)
        chi = np.sum((Qo - Qc)**2)
        if dlg:
            dlg.Pulse()
        return chi

    if 'C' in Inst['Type'][0]:
        wave = G2mth.getWave(Inst)
    else:
        difC = Inst['difC'][1]
    SGData = G2spc.SpcGroup(controls[13])[1]
    SSGData = G2spc.SSpcGroup(SGData, ssopt['ssSymb'])[1]
    A = G2lat.cell2A(controls[6:12])
    Z = controls[1]
    Vref = [True if x in ssopt['ssSymb'] else False for x in ['a', 'b', 'g']]
    values = []
    ranges = []
    for v, r in zip(ssopt['ModVec'], Vref):
        if r:
            ranges += [
                slice(.02, .98, .05),
            ]
            values += [
                v,
            ]
    dmin = getDmin(peaks) - 0.005
    Peaks = np.copy(np.array(peaks).T)
    result = so.brute(ZSSfunc,
                      ranges,
                      finish=so.fmin_cg,
                      args=(peaks, dmin, Inst, SGData, SSGData,
                            ssopt['ModVec'], Vref, ssopt['maxH'], A, wave, Z,
                            dlg))
    return Val2Vec(ssopt['ModVec'], Vref, result)
Example #19
0
def ImageRecalibrate(self,data,masks):
    'Needs a doc string'
    import ImageCalibrants as calFile
    print 'Image recalibration:'
    time0 = time.time()
    pixelSize = data['pixelSize']
    scalex = 1000./pixelSize[0]
    scaley = 1000./pixelSize[1]
    pixLimit = data['pixLimit']
    cutoff = data['cutoff']
    data['rings'] = []
    data['ellipses'] = []
    if not data['calibrant']:
        print 'no calibration material selected'
        return True    
    skip = data['calibskip']
    dmin = data['calibdmin']
    Bravais,SGs,Cells = calFile.Calibrants[data['calibrant']][:3]
    HKL = []
    for bravais,sg,cell in zip(Bravais,SGs,Cells):
        A = G2lat.cell2A(cell)
        if sg:
            SGData = G2spc.SpcGroup(sg)[1]
            hkl = G2pwd.getHKLpeak(dmin,SGData,A)
            HKL += hkl
        else:
            hkl = G2lat.GenHBravais(dmin,bravais,A)
            HKL += hkl
    HKL = G2lat.sortHKLd(HKL,True,False)
    varyList = [item for item in data['varyList'] if data['varyList'][item]]
    parmDict = {'dist':data['distance'],'det-X':data['center'][0],'det-Y':data['center'][1],
        'tilt':data['tilt'],'phi':data['rotation'],'wave':data['wavelength'],'dep':data['DetDepth']}
    Found = False
    wave = data['wavelength']
    frame = masks['Frames']
    tam = ma.make_mask_none(self.ImageZ.shape)
    if frame:
        tam = ma.mask_or(tam,MakeFrameMask(data,frame))
    for iH,H in enumerate(HKL):
        if debug:   print H 
        dsp = H[3]
        tth = 2.0*asind(wave/(2.*dsp))
        if tth+abs(data['tilt']) > 90.:
            print 'next line is a hyperbola - search stopped'
            break
        ellipse = GetEllipse(dsp,data)
        Ring = makeRing(dsp,ellipse,pixLimit,cutoff,scalex,scaley,ma.array(self.ImageZ,mask=tam))
        if Ring:
            if iH >= skip:
                data['rings'].append(np.array(Ring))
            data['ellipses'].append(copy.deepcopy(ellipse+('r',)))
            Found = True
        elif not Found:         #skipping inner rings, keep looking until ring found 
            continue
        else:                   #no more rings beyond edge of detector
            data['ellipses'].append([])
            continue
#            break
    rings = np.concatenate((data['rings']),axis=0)
    chisq = FitDetector(rings,varyList,parmDict)
    data['wavelength'] = parmDict['wave']
    data['distance'] = parmDict['dist']
    data['center'] = [parmDict['det-X'],parmDict['det-Y']]
    data['rotation'] = np.mod(parmDict['phi'],360.0)
    data['tilt'] = parmDict['tilt']
    data['DetDepth'] = parmDict['dep']
    data['chisq'] = chisq
    N = len(data['ellipses'])
    data['ellipses'] = []           #clear away individual ellipse fits
    for H in HKL[:N]:
        ellipse = GetEllipse(H[3],data)
        data['ellipses'].append(copy.deepcopy(ellipse+('b',)))    
    print 'calibration time = ',time.time()-time0
    G2plt.PlotImage(self,newImage=True)        
    return True
Example #20
0
def ImageCalibrate(self,data):
    'Needs a doc string'
    import copy
    import ImageCalibrants as calFile
    print 'Image calibration:'
    time0 = time.time()
    ring = data['ring']
    pixelSize = data['pixelSize']
    scalex = 1000./pixelSize[0]
    scaley = 1000./pixelSize[1]
    pixLimit = data['pixLimit']
    cutoff = data['cutoff']
    varyDict = data['varyList']
    if varyDict['dist'] and varyDict['wave']:
        print 'ERROR - you can not simultaneously calibrate distance and wavelength'
        return False
    if len(ring) < 5:
        print 'ERROR - not enough inner ring points for ellipse'
        return False
        
    #fit start points on inner ring
    data['ellipses'] = []
    data['rings'] = []
    outE = FitEllipse(ring)
    fmt  = '%s X: %.3f, Y: %.3f, phi: %.3f, R1: %.3f, R2: %.3f'
    fmt2 = '%s X: %.3f, Y: %.3f, phi: %.3f, R1: %.3f, R2: %.3f, chi**2: %.3f, Np: %d'
    if outE:
        print fmt%('start ellipse: ',outE[0][0],outE[0][1],outE[1],outE[2][0],outE[2][1])
        ellipse = outE
    else:
        return False
        
    #setup 360 points on that ring for "good" fit
    data['ellipses'].append(ellipse[:]+('g',))
    Ring = makeRing(1.0,ellipse,pixLimit,cutoff,scalex,scaley,self.ImageZ)
    if Ring:
        ellipse = FitEllipse(Ring)
        Ring = makeRing(1.0,ellipse,pixLimit,cutoff,scalex,scaley,self.ImageZ)    #do again
        ellipse = FitEllipse(Ring)
    else:
        print '1st ring not sufficiently complete to proceed'
        return False
    if debug:
        print fmt2%('inner ring:    ',ellipse[0][0],ellipse[0][1],ellipse[1],
            ellipse[2][0],ellipse[2][1],0.,len(Ring))     #cent,phi,radii
    data['ellipses'].append(ellipse[:]+('r',))
    data['rings'].append(np.array(Ring))
    G2plt.PlotImage(self,newImage=True)
    
#setup for calibration
    data['rings'] = []
    if not data['calibrant']:
        print 'no calibration material selected'
        return True
    
    skip = data['calibskip']
    dmin = data['calibdmin']
#generate reflection set
    Bravais,SGs,Cells = calFile.Calibrants[data['calibrant']][:3]
    HKL = []
    for bravais,sg,cell in zip(Bravais,SGs,Cells):
        A = G2lat.cell2A(cell)
        if sg:
            SGData = G2spc.SpcGroup(sg)[1]
            hkl = G2pwd.getHKLpeak(dmin,SGData,A)
            HKL += hkl
        else:
            hkl = G2lat.GenHBravais(dmin,bravais,A)
            HKL += hkl
    HKL = G2lat.sortHKLd(HKL,True,False)[skip:]
#set up 1st ring
    elcent,phi,radii = ellipse              #from fit of 1st ring
    dsp = HKL[0][3]
    print '1st ring: try %.4f'%(dsp)
    if varyDict['dist']:
        wave = data['wavelength']
        tth = 2.0*asind(wave/(2.*dsp))
    else:   #varyDict['wave']!
        dist = data['distance']
        tth = npatan2d(radii[0],dist)
        data['wavelength'] = wave =  2.0*dsp*sind(tth/2.0)
    Ring0 = makeRing(dsp,ellipse,3,cutoff,scalex,scaley,self.ImageZ)
    ttth = nptand(tth)
    stth = npsind(tth)
    ctth = npcosd(tth)
#1st estimate of tilt; assume ellipse - don't know sign though
    if varyDict['tilt']:
        tilt = npasind(np.sqrt(max(0.,1.-(radii[0]/radii[1])**2))*ctth)
        if not tilt:
            print 'WARNING - selected ring was fitted as a circle'
            print ' - if detector was tilted we suggest you skip this ring - WARNING'
    else:
        tilt = data['tilt']
#1st estimate of dist: sample to detector normal to plane
    if varyDict['dist']:
        data['distance'] = dist = radii[0]**2/(ttth*radii[1])
    else:
        dist = data['distance']
    if varyDict['tilt']:
#ellipse to cone axis (x-ray beam); 2 choices depending on sign of tilt
        zdisp = radii[1]*ttth*tand(tilt)
        zdism = radii[1]*ttth*tand(-tilt)
#cone axis position; 2 choices. Which is right?     
#NB: zdisp is || to major axis & phi is rotation of minor axis
#thus shift from beam to ellipse center is [Z*sin(phi),-Z*cos(phi)]
        centp = [elcent[0]+zdisp*sind(phi),elcent[1]-zdisp*cosd(phi)]
        centm = [elcent[0]+zdism*sind(phi),elcent[1]-zdism*cosd(phi)]
#check get same ellipse parms either way
#now do next ring; estimate either way & do a FitDetector each way; best fit is correct one
        fail = True
        i2 = 1
        while fail:
            dsp = HKL[i2][3]
            print '2nd ring: try %.4f'%(dsp)
            tth = 2.0*asind(wave/(2.*dsp))
            ellipsep = GetEllipse2(tth,0.,dist,centp,tilt,phi)
            print fmt%('plus ellipse :',ellipsep[0][0],ellipsep[0][1],ellipsep[1],ellipsep[2][0],ellipsep[2][1])
            Ringp = makeRing(dsp,ellipsep,3,cutoff,scalex,scaley,self.ImageZ)
            parmDict = {'dist':dist,'det-X':centp[0],'det-Y':centp[1],
                'tilt':tilt,'phi':phi,'wave':wave,'dep':0.0}        
            varyList = [item for item in varyDict if varyDict[item]]
            if len(Ringp) > 10:
                chip = FitDetector(np.array(Ring0+Ringp),varyList,parmDict,True)
                tiltp = parmDict['tilt']
                phip = parmDict['phi']
                centp = [parmDict['det-X'],parmDict['det-Y']]
                fail = False
            else:
                chip = 1e6
            ellipsem = GetEllipse2(tth,0.,dist,centm,-tilt,phi)
            print fmt%('minus ellipse:',ellipsem[0][0],ellipsem[0][1],ellipsem[1],ellipsem[2][0],ellipsem[2][1])
            Ringm = makeRing(dsp,ellipsem,3,cutoff,scalex,scaley,self.ImageZ)
            if len(Ringm) > 10:
                parmDict['tilt'] *= -1
                chim = FitDetector(np.array(Ring0+Ringm),varyList,parmDict,True)
                tiltm = parmDict['tilt']
                phim = parmDict['phi']
                centm = [parmDict['det-X'],parmDict['det-Y']]
                fail = False
            else:
                chim = 1e6
            if fail:
                i2 += 1
        if chip < chim:
            data['tilt'] = tiltp
            data['center'] = centp
            data['rotation'] = phip
        else:
            data['tilt'] = tiltm
            data['center'] = centm
            data['rotation'] = phim
        data['ellipses'].append(ellipsep[:]+('b',))
        data['rings'].append(np.array(Ringp))
        data['ellipses'].append(ellipsem[:]+('r',))
        data['rings'].append(np.array(Ringm))
        G2plt.PlotImage(self,newImage=True)
    parmDict = {'dist':data['distance'],'det-X':data['center'][0],'det-Y':data['center'][1],
        'tilt':data['tilt'],'phi':data['rotation'],'wave':data['wavelength'],'dep':data['DetDepth']}
    varyList = [item for item in varyDict if varyDict[item]]
    data['rings'] = []
    data['ellipses'] = []
    for i,H in enumerate(HKL):
        dsp = H[3]
        tth = 2.0*asind(wave/(2.*dsp))
        if tth+abs(data['tilt']) > 90.:
            print 'next line is a hyperbola - search stopped'
            break
        if debug:   print 'HKLD:',H[:4],'2-theta: %.4f'%(tth)
        elcent,phi,radii = ellipse = GetEllipse(dsp,data)
        data['ellipses'].append(copy.deepcopy(ellipse+('g',)))
        if debug:   print fmt%('predicted ellipse:',elcent[0],elcent[1],phi,radii[0],radii[1])
        Ring = makeRing(dsp,ellipse,pixLimit,cutoff,scalex,scaley,self.ImageZ)
        if Ring:
            data['rings'].append(np.array(Ring))
            rings = np.concatenate((data['rings']),axis=0)
            if i:
                chisq = FitDetector(rings,varyList,parmDict,False)
                data['distance'] = parmDict['dist']
                data['center'] = [parmDict['det-X'],parmDict['det-Y']]
                data['rotation'] = parmDict['phi']
                data['tilt'] = parmDict['tilt']
                data['DetDepth'] = parmDict['dep']
                data['chisq'] = chisq
                elcent,phi,radii = ellipse = GetEllipse(dsp,data)
                if debug:   print fmt2%('fitted ellipse:   ',elcent[0],elcent[1],phi,radii[0],radii[1],chisq,len(rings))
            data['ellipses'].append(copy.deepcopy(ellipse+('r',)))
#            G2plt.PlotImage(self,newImage=True)
        else:
            if debug:   print 'insufficient number of points in this ellipse to fit'
#            break
    G2plt.PlotImage(self,newImage=True)
    fullSize = len(self.ImageZ)/scalex
    if 2*radii[1] < .9*fullSize:
        print 'Are all usable rings (>25% visible) used? Try reducing Min ring I/Ib'
    N = len(data['ellipses'])
    if N > 2:
        FitDetector(rings,varyList,parmDict)
        data['wavelength'] = parmDict['wave']
        data['distance'] = parmDict['dist']
        data['center'] = [parmDict['det-X'],parmDict['det-Y']]
        data['rotation'] = parmDict['phi']
        data['tilt'] = parmDict['tilt']
        data['DetDepth'] = parmDict['dep']
    for H in HKL[:N]:
        ellipse = GetEllipse(H[3],data)
        data['ellipses'].append(copy.deepcopy(ellipse+('b',)))
    print 'calibration time = ',time.time()-time0
    G2plt.PlotImage(self,newImage=True)        
    return True
Example #21
0
    def UpdateLattice(self, parmVarDict, phase_index):
        '''
        Update the lattice parameters in the current model for all phases
        '''

        # Symmetry Options:
        # cubic, tetragonal, hexagonal, rhombohedral, trigonal,
        # orthorhombic, monoclinic, triclinic

        if self._symmetry[self._phase[phase_index]] == 'cubic':
            a = parmVarDict[str(phase_index) + '::a']
            b = a
            c = a
            alpha = 90.
            beta = 90.
            gamma = 90.

        elif self._symmetry[self._phase[phase_index]] == 'tetragonal':
            a = parmVarDict[str(phase_index) + '::a']
            b = a
            c = parmVarDict[str(phase_index) + '::c']
            alpha = 90.
            beta = 90.
            gamma = 90.

        elif self._symmetry[self._phase[phase_index]] == 'hexagonal':
            a = parmVarDict[str(phase_index) + '::a']
            b = a
            c = parmVarDict[str(phase_index) + '::c']
            alpha = 90.
            beta = 90.
            gamma = 120.

        elif self._symmetry[self._phase[phase_index]] == 'trigonal':
            a = parmVarDict[str(phase_index) + '::a']
            b = a
            c = parmVarDict[str(phase_index) + '::c']
            alpha = 90.
            beta = 90.
            gamma = 120.

        elif self._symmetry[self._phase[phase_index]] == 'rhombohedral':
            a = parmVarDict[str(phase_index) + '::a']
            b = a
            c = a
            alpha = parmVarDict[str(phase_index) + '::alpha']
            beta = alpha
            gamma = alpha

        elif self._symmetry[self._phase[phase_index]] == 'orthorhombic':
            a = parmVarDict[str(phase_index) + '::a']
            b = parmVarDict[str(phase_index) + '::b']
            c = parmVarDict[str(phase_index) + '::c']
            alpha = 90.
            beta = 90.
            gamma = 90.

        elif self._symmetry[self._phase[phase_index]] == 'monoclinic':
            a = parmVarDict[str(phase_index) + '::a']
            b = parmVarDict[str(phase_index) + '::b']
            c = parmVarDict[str(phase_index) + '::c']
            beta = parmVarDict[str(phase_index) + '::beta']
            alpha = 90.
            gamma = 90.

        elif self._symmetry[self._phase[phase_index]] == 'triclinic':
            a = parmVarDict[str(phase_index) + '::a']
            b = parmVarDict[str(phase_index) + '::b']
            c = parmVarDict[str(phase_index) + '::c']
            alpha = parmVarDict[str(phase_index) + '::alpha']
            beta = parmVarDict[str(phase_index) + '::beta']
            gamma = parmVarDict[str(phase_index) + '::gamma']

        A = G2latt.cell2A([a, b, c, alpha, beta, gamma])

        LatticeUpdate = {
            str(phase_index) + '::A0': A[0],
            str(phase_index) + '::A1': A[1],
            str(phase_index) + '::A2': A[2],
            str(phase_index) + '::A3': A[3],
            str(phase_index) + '::A4': A[4],
            str(phase_index) + '::A5': A[5]
        }

        self._parmDict.update(LatticeUpdate)
        return parmVarDict
Example #22
0
 def ReadEXPPhase(self, G2frame, filepointer):
     '''Read a phase from a GSAS .EXP file.
     '''
     shModels = ['cylindrical', 'none', 'shear - 2/m', 'rolling - mmm']
     textureData = {
         'Order': 0,
         'Model': 'cylindrical',
         'Sample omega': [False, 0.0],
         'Sample chi': [False, 0.0],
         'Sample phi': [False, 0.0],
         'SH Coeff': [False, {}],
         'SHShow': False,
         'PFhkl': [0, 0, 1],
         'PFxyz': [0, 0, 1],
         'PlotType': 'Pole figure'
     }
     shNcof = 0
     S = 1
     NPhas = []
     Expr = [{}, {}, {}, {}, {}, {}, {}, {},
             {}]  # GSAS can have at most 9 phases
     for line, S in enumerate(filepointer):
         self.errors = 'Error reading at line ' + str(line + 1)
         if 'EXPR NPHAS' in S[:12]:
             Num = S[12:-1].count('0')
             NPhas = S[12:-1].split()
         if 'CRS' in S[:3]:
             N = int(S[3:4]) - 1
             Expr[N][S[:12]] = S[12:-1]
     PNames = []
     if not NPhas:
         raise self.ImportException("No EXPR NPHAS record found")
     self.errors = 'Error interpreting file'
     for n, N in enumerate(NPhas):
         if N != '0':
             result = n
             key = 'CRS' + str(n + 1) + '    PNAM'
             PNames.append(Expr[n][key])
     if len(PNames) == 0:
         raise self.ImportException("No phases found")
     elif len(PNames) > 1:
         dlg = wx.SingleChoiceDialog(G2frame, 'Which phase to read?',
                                     'Read phase data', PNames,
                                     wx.CHOICEDLG_STYLE)
         try:
             if dlg.ShowModal() == wx.ID_OK:
                 result = dlg.GetSelection(
                 )  # I think this breaks is there are skipped phases. Cant this happen?
         finally:
             dlg.Destroy()
     EXPphase = Expr[result]
     keyList = EXPphase.keys()
     keyList.sort()
     SGData = {}
     if NPhas[result] == '1':
         Ptype = 'nuclear'
     elif NPhas[result] in ['2', '3']:
         Ptype = 'magnetic'
     elif NPhas[result] == '4':
         Ptype = 'macromolecular'
     elif NPhas[result] == '10':
         Ptype = 'Pawley'
     else:
         raise self.ImportException("Phase type not recognized")
     for key in keyList:
         if 'PNAM' in key:
             PhaseName = EXPphase[key].strip()
         elif 'ABC   ' in key:
             abc = [
                 float(EXPphase[key][:10]),
                 float(EXPphase[key][10:20]),
                 float(EXPphase[key][20:30])
             ]
         elif 'ANGLES' in key:
             angles = [
                 float(EXPphase[key][:10]),
                 float(EXPphase[key][10:20]),
                 float(EXPphase[key][20:30])
             ]
         elif 'SG SYM' in key:
             SpGrp = EXPphase[key][:15].strip()
             E, SGData = G2spc.SpcGroup(SpGrp)
             if E:
                 SGData = G2IO.SGData  # P 1 -- unlikely to need this!
                 self.warnings += '\nThe GSAS space group was not interpreted(!) and has been set to "P 1".'
                 self.warnings += "Change this in phase's General tab."
         elif 'OD    ' in key:
             SHdata = EXPphase[key].split()  # may not have all 9 values
             SHvals = 9 * [0]
             for i in range(9):
                 try:
                     float(SHdata[i])
                     SHvals[i] = SHdata[i]
                 except:
                     pass
             textureData['Order'] = int(SHvals[0])
             textureData['Model'] = shModels[int(SHvals[2])]
             textureData['Sample omega'] = [False, float(SHvals[6])]
             textureData['Sample chi'] = [False, float(SHvals[7])]
             textureData['Sample phi'] = [False, float(SHvals[8])]
             shNcof = int(SHvals[1])
     Atoms = []
     if Ptype == 'nuclear':
         for key in keyList:
             if 'AT' in key:
                 if key[11:] == 'A':
                     S = EXPphase[key]
                 elif key[11:] == 'B':
                     S += EXPphase[key]
                     Atom = [
                         S[50:58].strip(), S[:10].strip().capitalize(), '',
                         float(S[10:20]),
                         float(S[20:30]),
                         float(S[30:40]),
                         float(S[40:50]), '',
                         int(S[60:62]), S[130:131]
                     ]
                     if Atom[9] == 'I':
                         Atom += [float(S[68:78]), 0., 0., 0., 0., 0., 0.]
                     elif Atom[9] == 'A':
                         Atom += [
                             0.0,
                             float(S[68:78]),
                             float(S[78:88]),
                             float(S[88:98]),
                             float(S[98:108]),
                             float(S[108:118]),
                             float(S[118:128])
                         ]
                     XYZ = Atom[3:6]
                     Atom[7], Atom[8] = G2spc.SytSym(XYZ, SGData)
                     Atom.append(ran.randint(0, sys.maxint))
                     Atoms.append(Atom)
     elif Ptype == 'macromolecular':
         for key in keyList:
             if 'AT' in key[6:8]:
                 S = EXPphase[key]
                 Atom = [
                     S[56:60], S[50:54].strip().upper(), S[54:56],
                     S[46:51].strip(), S[:8].strip().capitalize(), '',
                     float(S[16:24]),
                     float(S[24:32]),
                     float(S[32:40]),
                     float(S[8:16]), '1', 1, 'I',
                     float(S[40:46]), 0, 0, 0, 0, 0, 0
                 ]
                 XYZ = Atom[6:9]
                 Atom[10], Atom[11] = G2spc.SytSym(XYZ, SGData)
                 Atom.append(ran.randint(0, sys.maxint))
                 Atoms.append(Atom)
     Volume = G2lat.calc_V(G2lat.cell2A(abc + angles))
     if shNcof:
         shCoef = {}
         nRec = [i + 1 for i in range((shNcof - 1) / 6 + 1)]
         for irec in nRec:
             ODkey = keyList[0][:6] + 'OD' + '%3dA' % (irec)
             indx = EXPphase[ODkey].split()
             ODkey = ODkey[:-1] + 'B'
             vals = EXPphase[ODkey].split()
             for i, val in enumerate(vals):
                 key = 'C(%s,%s,%s)' % (indx[3 * i], indx[3 * i + 1],
                                        indx[3 * i + 2])
                 shCoef[key] = float(val)
         textureData['SH Coeff'] = [False, shCoef]
     if not SGData:
         raise self.ImportException("No space group found in phase")
     if not abc:
         raise self.ImportException("No cell lengths found in phase")
     if not angles:
         raise self.ImportException("No cell angles found in phase")
     if not Atoms:
         raise self.ImportException("No atoms found in phase")
     Phase = G2IO.SetNewPhase(Name=PhaseName,
                              SGData=SGData,
                              cell=abc + angles + [
                                  Volume,
                              ])
     general = Phase['General']
     general['Type'] = Ptype
     if general['Type'] == 'macromolecular':
         general['AtomPtrs'] = [6, 4, 10, 12]
     else:
         general['AtomPtrs'] = [3, 1, 7, 9]
     general['SH Texture'] = textureData
     Phase['Atoms'] = Atoms
     return Phase
Example #23
0
def ImageRecalibrate(self, data, masks):
    'Needs a doc string'
    import ImageCalibrants as calFile
    print 'Image recalibration:'
    time0 = time.time()
    pixelSize = data['pixelSize']
    scalex = 1000. / pixelSize[0]
    scaley = 1000. / pixelSize[1]
    pixLimit = data['pixLimit']
    cutoff = data['cutoff']
    data['rings'] = []
    data['ellipses'] = []
    if not data['calibrant']:
        print 'no calibration material selected'
        return True
    skip = data['calibskip']
    dmin = data['calibdmin']
    Bravais, SGs, Cells = calFile.Calibrants[data['calibrant']][:3]
    HKL = []
    for bravais, sg, cell in zip(Bravais, SGs, Cells):
        A = G2lat.cell2A(cell)
        if sg:
            SGData = G2spc.SpcGroup(sg)[1]
            hkl = G2pwd.getHKLpeak(dmin, SGData, A)
            HKL += hkl
        else:
            hkl = G2lat.GenHBravais(dmin, bravais, A)
            HKL += hkl
    HKL = G2lat.sortHKLd(HKL, True, False)
    varyList = [item for item in data['varyList'] if data['varyList'][item]]
    parmDict = {
        'dist': data['distance'],
        'det-X': data['center'][0],
        'det-Y': data['center'][1],
        'tilt': data['tilt'],
        'phi': data['rotation'],
        'wave': data['wavelength'],
        'dep': data['DetDepth']
    }
    Found = False
    wave = data['wavelength']
    frame = masks['Frames']
    tam = ma.make_mask_none(self.ImageZ.shape)
    if frame:
        tam = ma.mask_or(tam, MakeFrameMask(data, frame))
    for iH, H in enumerate(HKL):
        if debug: print H
        dsp = H[3]
        tth = 2.0 * asind(wave / (2. * dsp))
        if tth + abs(data['tilt']) > 90.:
            print 'next line is a hyperbola - search stopped'
            break
        ellipse = GetEllipse(dsp, data)
        Ring = makeRing(dsp, ellipse, pixLimit, cutoff, scalex, scaley,
                        ma.array(self.ImageZ, mask=tam))
        if Ring:
            if iH >= skip:
                data['rings'].append(np.array(Ring))
            data['ellipses'].append(copy.deepcopy(ellipse + ('r', )))
            Found = True
        elif not Found:  #skipping inner rings, keep looking until ring found
            continue
        else:  #no more rings beyond edge of detector
            data['ellipses'].append([])
            continue


#            break
    rings = np.concatenate((data['rings']), axis=0)
    chisq = FitDetector(rings, varyList, parmDict)
    data['wavelength'] = parmDict['wave']
    data['distance'] = parmDict['dist']
    data['center'] = [parmDict['det-X'], parmDict['det-Y']]
    data['rotation'] = np.mod(parmDict['phi'], 360.0)
    data['tilt'] = parmDict['tilt']
    data['DetDepth'] = parmDict['dep']
    data['chisq'] = chisq
    N = len(data['ellipses'])
    data['ellipses'] = []  #clear away individual ellipse fits
    for H in HKL[:N]:
        ellipse = GetEllipse(H[3], data)
        data['ellipses'].append(copy.deepcopy(ellipse + ('b', )))
    print 'calibration time = ', time.time() - time0
    G2plt.PlotImage(self, newImage=True)
    return True
Example #24
0
 def ReadPDBPhase(self, filename, parent=None):
     '''Read a phase from a PDB file.
     '''
     EightPiSq = 8. * math.pi**2
     self.errors = 'Error opening file'
     file = open(filename, 'Ur')
     Phase = {}
     Title = ''
     Compnd = ''
     Atoms = []
     A = np.zeros(shape=(3, 3))
     S = file.readline()
     line = 1
     SGData = None
     cell = None
     while S:
         self.errors = 'Error reading at line ' + str(line)
         Atom = []
         if 'TITLE' in S[:5]:
             Title = S[10:72].strip()
         elif 'COMPND    ' in S[:10]:
             Compnd = S[10:72].strip()
         elif 'CRYST' in S[:5]:
             abc = S[7:34].split()
             angles = S[34:55].split()
             cell = [
                 float(abc[0]),
                 float(abc[1]),
                 float(abc[2]),
                 float(angles[0]),
                 float(angles[1]),
                 float(angles[2])
             ]
             Volume = G2lat.calc_V(G2lat.cell2A(cell))
             AA, AB = G2lat.cell2AB(cell)
             SpGrp = S[55:65]
             E, SGData = G2spc.SpcGroup(SpGrp)
             # space group processing failed, try to look up name in table
             if E:
                 SpGrpNorm = G2spc.StandardizeSpcName(SpGrp)
                 if SpGrpNorm:
                     E, SGData = G2spc.SpcGroup(SpGrpNorm)
             while E:
                 print G2spc.SGErrors(E)
                 dlg = wx.TextEntryDialog(
                     parent,
                     SpGrp[:-1] +
                     ' is invalid \nN.B.: make sure spaces separate axial fields in symbol',
                     'ERROR in space group symbol',
                     '',
                     style=wx.OK)
                 if dlg.ShowModal() == wx.ID_OK:
                     SpGrp = dlg.GetValue()
                     E, SGData = G2spc.SpcGroup(SpGrp)
                 else:
                     SGData = G2IO.SGData  # P 1
                     self.warnings += '\nThe space group was not interpreted and has been set to "P 1".'
                     self.warnings += "Change this in phase's General tab."
                 dlg.Destroy()
             SGlines = G2spc.SGPrint(SGData)
             for l in SGlines:
                 print l
         elif 'SCALE' in S[:5]:
             V = S[10:41].split()
             A[int(S[5]) - 1] = [float(V[0]), float(V[1]), float(V[2])]
         elif 'ATOM' in S[:4] or 'HETATM' in S[:6]:
             if not SGData:
                 self.warnings += '\nThe space group was not read before atoms and has been set to "P 1". '
                 self.warnings += "Change this in phase's General tab."
                 SGData = G2IO.SGData  # P 1
             XYZ = [float(S[31:39]), float(S[39:47]), float(S[47:55])]
             XYZ = np.inner(AB, XYZ)
             XYZ = np.where(abs(XYZ) < 0.00001, 0, XYZ)
             SytSym, Mult = G2spc.SytSym(XYZ, SGData)
             Uiso = float(S[61:67]) / EightPiSq
             Type = S[12:14].lower()
             if Type[0] in '123456789':
                 Type = Type[1:]
             Atom = [
                 S[22:27].strip(), S[17:20].upper(), S[20:22],
                 S[12:17].strip(),
                 Type.strip().capitalize(), '', XYZ[0], XYZ[1], XYZ[2],
                 float(S[55:61]), SytSym, Mult, 'I', Uiso, 0, 0, 0, 0, 0, 0
             ]
             S = file.readline()
             line += 1
             if 'ANISOU' in S[:6]:
                 Uij = S[30:72].split()
                 Uij = [
                     float(Uij[0]) / 10000.,
                     float(Uij[1]) / 10000.,
                     float(Uij[2]) / 10000.,
                     float(Uij[3]) / 10000.,
                     float(Uij[4]) / 10000.,
                     float(Uij[5]) / 10000.
                 ]
                 Atom = Atom[:14] + Uij
                 Atom[12] = 'A'
             Atom.append(ran.randint(0, sys.maxint))
             Atoms.append(Atom)
         S = file.readline()
         line += 1
     file.close()
     self.errors = 'Error after read complete'
     if Title:
         PhaseName = Title
     elif Compnd:
         PhaseName = Compnd
     else:
         PhaseName = 'None'
     if not SGData:
         raise self.ImportException("No space group (CRYST entry) found")
     if not cell:
         raise self.ImportException("No cell (CRYST entry) found")
     Phase = G2IO.SetNewPhase(Name=PhaseName,
                              SGData=SGData,
                              cell=cell + [
                                  Volume,
                              ])
     Phase['General']['Type'] = 'macromolecular'
     Phase['General']['AtomPtrs'] = [6, 4, 10, 12]
     Phase['Atoms'] = Atoms
     return Phase
Example #25
0
def RetDistAngle(DisAglCtls,DisAglData):
    '''Compute and return distances and angles

    :param dict DisAglCtls: contains distance/angle radii usually defined using
       :func:`GSASIIgrid.DisAglDialog`
    :param dict DisAglData: contains phase data: 
       Items 'OrigAtoms' and 'TargAtoms' contain the atoms to be used
       for distance/angle origins and atoms to be used as targets.
       Item 'SGData' has the space group information (see :ref:`Space Group object<SGData_table>`)

    :returns: AtomLabels,DistArray,AngArray where:

      **AtomLabels** is a dict of atom labels, keys are the atom number

      **DistArray** is a dict keyed by the origin atom number where the value is a list
      of distance entries. The value for each distance is a list containing:
      
        0) the target atom number (int);
        1) the unit cell offsets added to x,y & z (tuple of int values)
        2) the symmetry operator number (which may be modified to indicate centering and center of symmetry)
        3) an interatomic distance in A (float)
        4) an uncertainty on the distance in A or 0.0 (float)

      **AngArray** is a dict keyed by the origin (central) atom number where
      the value is a list of
      angle entries. The value for each angle entry consists of three values:

        0) a distance item reference for one neighbor (int)
        1) a distance item reference for a second neighbor (int)
        2) a angle, uncertainty pair; the s.u. may be zero (tuple of two floats)

      The AngArray distance reference items refer directly to the index of the items in the
      DistArray item for the list of distances for the central atom. 
    '''
    import numpy.ma as ma
    
    SGData = DisAglData['SGData']
    Cell = DisAglData['Cell']
    
    Amat,Bmat = G2lat.cell2AB(Cell[:6])
    covData = {}
    if 'covData' in DisAglData:   
        covData = DisAglData['covData']
        covMatrix = covData['covMatrix']
        varyList = covData['varyList']
        pfx = str(DisAglData['pId'])+'::'
        A = G2lat.cell2A(Cell[:6])
        cellSig = G2stIO.getCellEsd(pfx,SGData,A,covData)
        names = [' a = ',' b = ',' c = ',' alpha = ',' beta = ',' gamma = ',' Volume = ']
        valEsd = [G2mth.ValEsd(Cell[i],cellSig[i],True) for i in range(7)]

    Factor = DisAglCtls['Factors']
    Radii = dict(zip(DisAglCtls['AtomTypes'],zip(DisAglCtls['BondRadii'],DisAglCtls['AngleRadii'])))
    indices = (-1,0,1)
    Units = np.array([[h,k,l] for h in indices for k in indices for l in indices])
    origAtoms = DisAglData['OrigAtoms']
    targAtoms = DisAglData['TargAtoms']
    AtomLabels = {}
    for Oatom in origAtoms:
        AtomLabels[Oatom[0]] = Oatom[1]
    for Oatom in targAtoms:
        AtomLabels[Oatom[0]] = Oatom[1]
    DistArray = {}
    AngArray = {}
    for Oatom in origAtoms:
        DistArray[Oatom[0]] = []
        AngArray[Oatom[0]] = []
        OxyzNames = ''
        IndBlist = []
        Dist = []
        Vect = []
        VectA = []
        angles = []
        for Tatom in targAtoms:
            Xvcov = []
            TxyzNames = ''
            if 'covData' in DisAglData:
                OxyzNames = [pfx+'dAx:%d'%(Oatom[0]),pfx+'dAy:%d'%(Oatom[0]),pfx+'dAz:%d'%(Oatom[0])]
                TxyzNames = [pfx+'dAx:%d'%(Tatom[0]),pfx+'dAy:%d'%(Tatom[0]),pfx+'dAz:%d'%(Tatom[0])]
                Xvcov = G2mth.getVCov(OxyzNames+TxyzNames,varyList,covMatrix)
            result = G2spc.GenAtom(Tatom[3:6],SGData,False,Move=False)
            BsumR = (Radii[Oatom[2]][0]+Radii[Tatom[2]][0])*Factor[0]
            AsumR = (Radii[Oatom[2]][1]+Radii[Tatom[2]][1])*Factor[1]
            for Txyz,Top,Tunit in result:
                Dx = (Txyz-np.array(Oatom[3:6]))+Units
                dx = np.inner(Amat,Dx)
                dist = ma.masked_less(np.sqrt(np.sum(dx**2,axis=0)),0.5)
                IndB = ma.nonzero(ma.masked_greater(dist-BsumR,0.))
                if np.any(IndB):
                    for indb in IndB:
                        for i in range(len(indb)):
                            if str(dx.T[indb][i]) not in IndBlist:
                                IndBlist.append(str(dx.T[indb][i]))
                                unit = Units[indb][i]
                                tunit = (unit[0]+Tunit[0],unit[1]+Tunit[1],unit[2]+Tunit[2])
                                pdpx = G2mth.getDistDerv(Oatom[3:6],Tatom[3:6],Amat,unit,Top,SGData)
                                sig = 0.0
                                if len(Xvcov):
                                    sig = np.sqrt(np.inner(pdpx,np.inner(Xvcov,pdpx)))
                                Dist.append([Oatom[0],Tatom[0],tunit,Top,ma.getdata(dist[indb])[i],sig])
                                if (Dist[-1][-2]-AsumR) <= 0.:
                                    Vect.append(dx.T[indb][i]/Dist[-1][-2])
                                    VectA.append([OxyzNames,np.array(Oatom[3:6]),TxyzNames,np.array(Tatom[3:6]),unit,Top])
                                else:
                                    Vect.append([0.,0.,0.])
                                    VectA.append([])
        for D in Dist:
            DistArray[Oatom[0]].append(D[1:])
        Vect = np.array(Vect)
        angles = np.zeros((len(Vect),len(Vect)))
        angsig = np.zeros((len(Vect),len(Vect)))
        for i,veca in enumerate(Vect):
            if np.any(veca):
                for j,vecb in enumerate(Vect):
                    if np.any(vecb):
                        angles[i][j],angsig[i][j] = G2mth.getAngSig(VectA[i],VectA[j],Amat,SGData,covData)
                        if i <= j: continue
                        AngArray[Oatom[0]].append((i,j,
                            G2mth.getAngSig(VectA[i],VectA[j],Amat,SGData,covData)))
    return AtomLabels,DistArray,AngArray
Example #26
0
def PrintDistAngle(DisAglCtls,DisAglData,out=sys.stdout):
    '''Print distances and angles

    :param dict DisAglCtls: contains distance/angle radii usually defined using
       :func:`GSASIIgrid.DisAglDialog`
    :param dict DisAglData: contains phase data: 
       Items 'OrigAtoms' and 'TargAtoms' contain the atoms to be used
       for distance/angle origins and atoms to be used as targets.
       Item 'SGData' has the space group information (see :ref:`Space Group object<SGData_table>`)
    :param file out: file object for output. Defaults to sys.stdout.    
    '''
    import numpy.ma as ma
    def MyPrint(s):
        out.write(s+'\n')
        # print(s,file=out) # use in Python 3
    
    def ShowBanner(name):
        MyPrint(80*'*')
        MyPrint('   Interatomic Distances and Angles for phase '+name)
        MyPrint((80*'*')+'\n')

    ShowBanner(DisAglCtls['Name'])
    SGData = DisAglData['SGData']
    SGtext,SGtable = G2spc.SGPrint(SGData)
    for line in SGtext: MyPrint(line)
    if len(SGtable):
        for i,item in enumerate(SGtable[::2]):
            line = ' %s %s'%(item.ljust(30),SGtable[2*i+1].ljust(30))
            MyPrint(line)   
    else:
        MyPrint(' ( 1)    %s'%(SGtable[0])) 
    Cell = DisAglData['Cell']
    
    Amat,Bmat = G2lat.cell2AB(Cell[:6])
    covData = {}
    if 'covData' in DisAglData:   
        covData = DisAglData['covData']
        covMatrix = covData['covMatrix']
        varyList = covData['varyList']
        pfx = str(DisAglData['pId'])+'::'
        A = G2lat.cell2A(Cell[:6])
        cellSig = G2stIO.getCellEsd(pfx,SGData,A,covData)
        names = [' a = ',' b = ',' c = ',' alpha = ',' beta = ',' gamma = ',' Volume = ']
        valEsd = [G2mth.ValEsd(Cell[i],cellSig[i],True) for i in range(7)]
        line = '\n Unit cell:'
        for name,vals in zip(names,valEsd):
            line += name+vals  
        MyPrint(line)
    else: 
        MyPrint('\n Unit cell: a = '+('%.5f'%Cell[0])+' b = '+('%.5f'%Cell[1])+' c = '+('%.5f'%Cell[2])+
            ' alpha = '+('%.3f'%Cell[3])+' beta = '+('%.3f'%Cell[4])+' gamma = '+
            ('%.3f'%Cell[5])+' volume = '+('%.3f'%Cell[6]))

    AtomLabels,DistArray,AngArray = RetDistAngle(DisAglCtls,DisAglData)
    origAtoms = DisAglData['OrigAtoms']
    targAtoms = DisAglData['TargAtoms']
    for Oatom in origAtoms:
        i = Oatom[0]
        Dist = DistArray[i]
        nDist = len(Dist)
        angles = np.zeros((nDist,nDist))
        angsig = np.zeros((nDist,nDist))
        for k,j,tup in AngArray[i]:
            angles[k][j],angsig[k][j] = angles[j][k],angsig[j][k] = tup
        line = ''
        for i,x in enumerate(Oatom[3:6]):
            line += ('%12.5f'%x).rstrip('0')
        MyPrint('\n Distances & angles for '+Oatom[1]+' at '+line.rstrip())
        MyPrint(80*'*')
        line = ''
        for dist in Dist[:-1]:
            line += '%12s'%(AtomLabels[dist[0]].center(12))
        MyPrint('  To       cell +(sym. op.)      dist.  '+line.rstrip())
        for i,dist in enumerate(Dist):
            line = ''
            for j,angle in enumerate(angles[i][0:i]):
                sig = angsig[i][j]
                if angle:
                    if sig:
                        line += '%12s'%(G2mth.ValEsd(angle,sig,True).center(12))
                    else:
                        val = '%.3f'%(angle)
                        line += '%12s'%(val.center(12))
                else:
                    line += 12*' '
            if dist[4]:            #sig exists!
                val = G2mth.ValEsd(dist[3],dist[4])
            else:
                val = '%8.4f'%(dist[3])
            tunit = '[%2d%2d%2d]'% dist[1]
            MyPrint(('  %8s%10s+(%4d) %12s'%(AtomLabels[dist[0]].ljust(8),tunit.ljust(10),dist[2],val.center(12)))+line.rstrip())
Example #27
0
 def ReadEXPPhase(self, G2frame,filepointer):
     '''Read a phase from a GSAS .EXP file.
     '''
     shModels = ['cylindrical','none','shear - 2/m','rolling - mmm']
     textureData = {'Order':0,'Model':'cylindrical','Sample omega':[False,0.0],
         'Sample chi':[False,0.0],'Sample phi':[False,0.0],'SH Coeff':[False,{}],
         'SHShow':False,'PFhkl':[0,0,1],'PFxyz':[0,0,1],'PlotType':'Pole figure'}
     shNcof = 0
     S = 1
     NPhas = []
     Expr = [{},{},{},{},{},{},{},{},{}] # GSAS can have at most 9 phases
     for line,S in enumerate(filepointer):
         self.errors = 'Error reading at line '+str(line+1)
         if 'EXPR NPHAS' in S[:12]:
             Num = S[12:-1].count('0')
             NPhas = S[12:-1].split()
         if 'CRS' in S[:3]:
             N = int(S[3:4])-1
             Expr[N][S[:12]] = S[12:-1]
     PNames = []
     if not NPhas:
         raise self.ImportException("No EXPR NPHAS record found")
     self.errors = 'Error interpreting file'
     for n,N in enumerate(NPhas):
         if N != '0':
             result = n
             key = 'CRS'+str(n+1)+'    PNAM'
             PNames.append(Expr[n][key])
     if len(PNames) == 0:
         raise self.ImportException("No phases found")            
     elif len(PNames) > 1:
         dlg = wx.SingleChoiceDialog(G2frame, 'Which phase to read?', 'Read phase data', PNames, wx.CHOICEDLG_STYLE)
         try:
             if dlg.ShowModal() == wx.ID_OK:
                 result = dlg.GetSelection() # I think this breaks is there are skipped phases. Cant this happen?
         finally:
             dlg.Destroy()        
     EXPphase = Expr[result]
     keyList = EXPphase.keys()
     keyList.sort()
     SGData = {}
     if NPhas[result] == '1':
         Ptype = 'nuclear'
     elif NPhas[result] in ['2','3']:
         Ptype = 'magnetic'
     elif NPhas[result] == '4':
         Ptype = 'macromolecular'
     elif NPhas[result] == '10':
         Ptype = 'Pawley'
     else:
         raise self.ImportException("Phase type not recognized")            
     for key in keyList:
         if 'PNAM' in key:
            PhaseName = EXPphase[key].strip()
         elif 'ABC   ' in key:
             abc = [float(EXPphase[key][:10]),float(EXPphase[key][10:20]),float(EXPphase[key][20:30])]                        
         elif 'ANGLES' in key:
             angles = [float(EXPphase[key][:10]),float(EXPphase[key][10:20]),float(EXPphase[key][20:30])]                                                
         elif 'SG SYM' in key:
             SpGrp = EXPphase[key][:15].strip()
             E,SGData = G2spc.SpcGroup(SpGrp)
             if E:
                 SGData = G2IO.SGData # P 1 -- unlikely to need this!
                 self.warnings += '\nThe GSAS space group was not interpreted(!) and has been set to "P 1".'
                 self.warnings += "Change this in phase's General tab."                       
         elif 'OD    ' in key:
             SHdata = EXPphase[key].split() # may not have all 9 values
             SHvals = 9*[0]
             for i in range(9):
                 try:
                     float(SHdata[i])
                     SHvals[i] = SHdata[i]
                 except:
                     pass
             textureData['Order'] = int(SHvals[0])
             textureData['Model'] = shModels[int(SHvals[2])]
             textureData['Sample omega'] = [False,float(SHvals[6])]
             textureData['Sample chi'] = [False,float(SHvals[7])]
             textureData['Sample phi'] = [False,float(SHvals[8])]
             shNcof = int(SHvals[1])
     Atoms = []
     if Ptype == 'nuclear':
         for key in keyList:
             if 'AT' in key:
                 if key[11:] == 'A':
                     S = EXPphase[key]
                 elif key[11:] == 'B':
                     S += EXPphase[key]
                     Atom = [S[50:58].strip(),S[:10].strip().capitalize(),'',
                         float(S[10:20]),float(S[20:30]),float(S[30:40]),
                         float(S[40:50]),'',int(S[60:62]),S[130:131]]
                     if Atom[9] == 'I':
                         Atom += [float(S[68:78]),0.,0.,0.,0.,0.,0.]
                     elif Atom[9] == 'A':
                         Atom += [0.0,float(S[68:78]),float(S[78:88]),
                             float(S[88:98]),float(S[98:108]),
                             float(S[108:118]),float(S[118:128])]
                     XYZ = Atom[3:6]
                     Atom[7],Atom[8] = G2spc.SytSym(XYZ,SGData)
                     Atom.append(ran.randint(0,sys.maxint))
                     Atoms.append(Atom)
     elif Ptype == 'macromolecular':
         for key in keyList:
             if 'AT' in key[6:8]:
                 S = EXPphase[key]
                 Atom = [S[56:60],S[50:54].strip().upper(),S[54:56],
                     S[46:51].strip(),S[:8].strip().capitalize(),'',
                     float(S[16:24]),float(S[24:32]),float(S[32:40]),
                     float(S[8:16]),'1',1,'I',float(S[40:46]),0,0,0,0,0,0]
                 XYZ = Atom[6:9]
                 Atom[10],Atom[11] = G2spc.SytSym(XYZ,SGData)
                 Atom.append(ran.randint(0,sys.maxint))
                 Atoms.append(Atom)
     Volume = G2lat.calc_V(G2lat.cell2A(abc+angles))
     if shNcof:
         shCoef = {}
         nRec = [i+1 for i in range((shNcof-1)/6+1)]
         for irec in nRec:
             ODkey = keyList[0][:6]+'OD'+'%3dA'%(irec)
             indx = EXPphase[ODkey].split()
             ODkey = ODkey[:-1]+'B'
             vals = EXPphase[ODkey].split()
             for i,val in enumerate(vals):
                 key = 'C(%s,%s,%s)'%(indx[3*i],indx[3*i+1],indx[3*i+2])
                 shCoef[key] = float(val)
         textureData['SH Coeff'] = [False,shCoef]
     if not SGData:
         raise self.ImportException("No space group found in phase")
     if not abc:
         raise self.ImportException("No cell lengths found in phase")
     if not angles:
         raise self.ImportException("No cell angles found in phase")
     if not Atoms:
         raise self.ImportException("No atoms found in phase")
     Phase = G2IO.SetNewPhase(Name=PhaseName,SGData=SGData,cell=abc+angles+[Volume,])
     general = Phase['General']
     general['Type'] = Ptype
     if general['Type'] =='macromolecular':
         general['AtomPtrs'] = [6,4,10,12]
     else:
         general['AtomPtrs'] = [3,1,7,9]    
     general['SH Texture'] = textureData
     Phase['Atoms'] = Atoms
     return Phase
Example #28
0
def ImageCalibrate(self, data):
    'Needs a doc string'
    import copy
    import ImageCalibrants as calFile
    print 'Image calibration:'
    time0 = time.time()
    ring = data['ring']
    pixelSize = data['pixelSize']
    scalex = 1000. / pixelSize[0]
    scaley = 1000. / pixelSize[1]
    pixLimit = data['pixLimit']
    cutoff = data['cutoff']
    varyDict = data['varyList']
    if varyDict['dist'] and varyDict['wave']:
        print 'ERROR - you can not simultaneously calibrate distance and wavelength'
        return False
    if len(ring) < 5:
        print 'ERROR - not enough inner ring points for ellipse'
        return False

    #fit start points on inner ring
    data['ellipses'] = []
    data['rings'] = []
    outE = FitEllipse(ring)
    fmt = '%s X: %.3f, Y: %.3f, phi: %.3f, R1: %.3f, R2: %.3f'
    fmt2 = '%s X: %.3f, Y: %.3f, phi: %.3f, R1: %.3f, R2: %.3f, chi**2: %.3f, Np: %d'
    if outE:
        print fmt % ('start ellipse: ', outE[0][0], outE[0][1], outE[1],
                     outE[2][0], outE[2][1])
        ellipse = outE
    else:
        return False

    #setup 360 points on that ring for "good" fit
    data['ellipses'].append(ellipse[:] + ('g', ))
    Ring = makeRing(1.0, ellipse, pixLimit, cutoff, scalex, scaley,
                    self.ImageZ)
    if Ring:
        ellipse = FitEllipse(Ring)
        Ring = makeRing(1.0, ellipse, pixLimit, cutoff, scalex, scaley,
                        self.ImageZ)  #do again
        ellipse = FitEllipse(Ring)
    else:
        print '1st ring not sufficiently complete to proceed'
        return False
    if debug:
        print fmt2 % ('inner ring:    ', ellipse[0][0], ellipse[0][1],
                      ellipse[1], ellipse[2][0], ellipse[2][1], 0., len(Ring)
                      )  #cent,phi,radii
    data['ellipses'].append(ellipse[:] + ('r', ))
    data['rings'].append(np.array(Ring))
    G2plt.PlotImage(self, newImage=True)

    #setup for calibration
    data['rings'] = []
    if not data['calibrant']:
        print 'no calibration material selected'
        return True

    skip = data['calibskip']
    dmin = data['calibdmin']
    #generate reflection set
    Bravais, SGs, Cells = calFile.Calibrants[data['calibrant']][:3]
    HKL = []
    for bravais, sg, cell in zip(Bravais, SGs, Cells):
        A = G2lat.cell2A(cell)
        if sg:
            SGData = G2spc.SpcGroup(sg)[1]
            hkl = G2pwd.getHKLpeak(dmin, SGData, A)
            HKL += hkl
        else:
            hkl = G2lat.GenHBravais(dmin, bravais, A)
            HKL += hkl
    HKL = G2lat.sortHKLd(HKL, True, False)[skip:]
    #set up 1st ring
    elcent, phi, radii = ellipse  #from fit of 1st ring
    dsp = HKL[0][3]
    print '1st ring: try %.4f' % (dsp)
    if varyDict['dist']:
        wave = data['wavelength']
        tth = 2.0 * asind(wave / (2. * dsp))
    else:  #varyDict['wave']!
        dist = data['distance']
        tth = npatan2d(radii[0], dist)
        data['wavelength'] = wave = 2.0 * dsp * sind(tth / 2.0)
    Ring0 = makeRing(dsp, ellipse, 3, cutoff, scalex, scaley, self.ImageZ)
    ttth = nptand(tth)
    stth = npsind(tth)
    ctth = npcosd(tth)
    #1st estimate of tilt; assume ellipse - don't know sign though
    if varyDict['tilt']:
        tilt = npasind(np.sqrt(max(0., 1. - (radii[0] / radii[1])**2)) * ctth)
        if not tilt:
            print 'WARNING - selected ring was fitted as a circle'
            print ' - if detector was tilted we suggest you skip this ring - WARNING'
    else:
        tilt = data['tilt']
#1st estimate of dist: sample to detector normal to plane
    if varyDict['dist']:
        data['distance'] = dist = radii[0]**2 / (ttth * radii[1])
    else:
        dist = data['distance']
    if varyDict['tilt']:
        #ellipse to cone axis (x-ray beam); 2 choices depending on sign of tilt
        zdisp = radii[1] * ttth * tand(tilt)
        zdism = radii[1] * ttth * tand(-tilt)
        #cone axis position; 2 choices. Which is right?
        #NB: zdisp is || to major axis & phi is rotation of minor axis
        #thus shift from beam to ellipse center is [Z*sin(phi),-Z*cos(phi)]
        centp = [elcent[0] + zdisp * sind(phi), elcent[1] - zdisp * cosd(phi)]
        centm = [elcent[0] + zdism * sind(phi), elcent[1] - zdism * cosd(phi)]
        #check get same ellipse parms either way
        #now do next ring; estimate either way & do a FitDetector each way; best fit is correct one
        fail = True
        i2 = 1
        while fail:
            dsp = HKL[i2][3]
            print '2nd ring: try %.4f' % (dsp)
            tth = 2.0 * asind(wave / (2. * dsp))
            ellipsep = GetEllipse2(tth, 0., dist, centp, tilt, phi)
            print fmt % ('plus ellipse :', ellipsep[0][0], ellipsep[0][1],
                         ellipsep[1], ellipsep[2][0], ellipsep[2][1])
            Ringp = makeRing(dsp, ellipsep, 3, cutoff, scalex, scaley,
                             self.ImageZ)
            parmDict = {
                'dist': dist,
                'det-X': centp[0],
                'det-Y': centp[1],
                'tilt': tilt,
                'phi': phi,
                'wave': wave,
                'dep': 0.0
            }
            varyList = [item for item in varyDict if varyDict[item]]
            if len(Ringp) > 10:
                chip = FitDetector(np.array(Ring0 + Ringp), varyList, parmDict,
                                   True)
                tiltp = parmDict['tilt']
                phip = parmDict['phi']
                centp = [parmDict['det-X'], parmDict['det-Y']]
                fail = False
            else:
                chip = 1e6
            ellipsem = GetEllipse2(tth, 0., dist, centm, -tilt, phi)
            print fmt % ('minus ellipse:', ellipsem[0][0], ellipsem[0][1],
                         ellipsem[1], ellipsem[2][0], ellipsem[2][1])
            Ringm = makeRing(dsp, ellipsem, 3, cutoff, scalex, scaley,
                             self.ImageZ)
            if len(Ringm) > 10:
                parmDict['tilt'] *= -1
                chim = FitDetector(np.array(Ring0 + Ringm), varyList, parmDict,
                                   True)
                tiltm = parmDict['tilt']
                phim = parmDict['phi']
                centm = [parmDict['det-X'], parmDict['det-Y']]
                fail = False
            else:
                chim = 1e6
            if fail:
                i2 += 1
        if chip < chim:
            data['tilt'] = tiltp
            data['center'] = centp
            data['rotation'] = phip
        else:
            data['tilt'] = tiltm
            data['center'] = centm
            data['rotation'] = phim
        data['ellipses'].append(ellipsep[:] + ('b', ))
        data['rings'].append(np.array(Ringp))
        data['ellipses'].append(ellipsem[:] + ('r', ))
        data['rings'].append(np.array(Ringm))
        G2plt.PlotImage(self, newImage=True)
    parmDict = {
        'dist': data['distance'],
        'det-X': data['center'][0],
        'det-Y': data['center'][1],
        'tilt': data['tilt'],
        'phi': data['rotation'],
        'wave': data['wavelength'],
        'dep': data['DetDepth']
    }
    varyList = [item for item in varyDict if varyDict[item]]
    data['rings'] = []
    data['ellipses'] = []
    for i, H in enumerate(HKL):
        dsp = H[3]
        tth = 2.0 * asind(wave / (2. * dsp))
        if tth + abs(data['tilt']) > 90.:
            print 'next line is a hyperbola - search stopped'
            break
        if debug: print 'HKLD:', H[:4], '2-theta: %.4f' % (tth)
        elcent, phi, radii = ellipse = GetEllipse(dsp, data)
        data['ellipses'].append(copy.deepcopy(ellipse + ('g', )))
        if debug:
            print fmt % ('predicted ellipse:', elcent[0], elcent[1], phi,
                         radii[0], radii[1])
        Ring = makeRing(dsp, ellipse, pixLimit, cutoff, scalex, scaley,
                        self.ImageZ)
        if Ring:
            data['rings'].append(np.array(Ring))
            rings = np.concatenate((data['rings']), axis=0)
            if i:
                chisq = FitDetector(rings, varyList, parmDict, False)
                data['distance'] = parmDict['dist']
                data['center'] = [parmDict['det-X'], parmDict['det-Y']]
                data['rotation'] = parmDict['phi']
                data['tilt'] = parmDict['tilt']
                data['DetDepth'] = parmDict['dep']
                data['chisq'] = chisq
                elcent, phi, radii = ellipse = GetEllipse(dsp, data)
                if debug:
                    print fmt2 % ('fitted ellipse:   ', elcent[0], elcent[1],
                                  phi, radii[0], radii[1], chisq, len(rings))
            data['ellipses'].append(copy.deepcopy(ellipse + ('r', )))
#            G2plt.PlotImage(self,newImage=True)
        else:
            if debug:
                print 'insufficient number of points in this ellipse to fit'


#            break
    G2plt.PlotImage(self, newImage=True)
    fullSize = len(self.ImageZ) / scalex
    if 2 * radii[1] < .9 * fullSize:
        print 'Are all usable rings (>25% visible) used? Try reducing Min ring I/Ib'
    N = len(data['ellipses'])
    if N > 2:
        FitDetector(rings, varyList, parmDict)
        data['wavelength'] = parmDict['wave']
        data['distance'] = parmDict['dist']
        data['center'] = [parmDict['det-X'], parmDict['det-Y']]
        data['rotation'] = parmDict['phi']
        data['tilt'] = parmDict['tilt']
        data['DetDepth'] = parmDict['dep']
    for H in HKL[:N]:
        ellipse = GetEllipse(H[3], data)
        data['ellipses'].append(copy.deepcopy(ellipse + ('b', )))
    print 'calibration time = ', time.time() - time0
    G2plt.PlotImage(self, newImage=True)
    return True
Example #29
0
 def Readrmc6fPhase(self, filename, parent=None):
     '''Read a phase from a rmc6f file.
     '''
     self.errors = 'Error opening file'
     fp = open(filename, 'Ur')
     Phase = {}
     Title = os.path.split(filename)
     G2G.SaveGPXdirectory(Title[0])
     Title = os.path.splitext(Title[1])[0]
     Atoms = []
     S = fp.readline()
     line = 1
     SGData = None
     cell = None
     IA = 'I'
     Uiso = 0.01
     Uij = [0. for i in range(6)]
     while S:
         self.errors = 'Error reading at line ' + str(line)
         Atom = []
         if 'Cell' in S[:4]:
             cellRec = S.split(':')[1].split()
             abc = cellRec[:3]
             angles = cellRec[3:]
             cell = [
                 float(abc[0]),
                 float(abc[1]),
                 float(abc[2]),
                 float(angles[0]),
                 float(angles[1]),
                 float(angles[2])
             ]
             Volume = G2lat.calc_V(G2lat.cell2A(cell))
             AA, AB = G2lat.cell2AB(cell)
             SGData = G2obj.P1SGData  # P 1
         elif 'Atoms' in S[:5]:
             S = fp.readline()[:-1]
             AtRec = S.split()
             for ix, s in enumerate(AtRec):
                 if '.' in s:
                     break  #is points at x
             while S:
                 AtRec = S.split()
                 Atype = AtRec[1]
                 Aname = Atype + AtRec[0]
                 Afrac = 1.0
                 x, y, z = AtRec[ix:ix + 3]
                 XYZ = np.array([float(x), float(y), float(z)])
                 SytSym, Mult = '1', 1
                 Atom = [
                     Aname, Atype, '', XYZ[0], XYZ[1], XYZ[2], Afrac,
                     SytSym, Mult, IA, Uiso
                 ]
                 Atom += Uij
                 Atom.append(ran.randint(0, sys.maxsize))
                 Atoms.append(Atom)
                 S = fp.readline()[:-1]
         S = fp.readline()
         line += 1
     fp.close()
     self.errors = 'Error after read complete'
     Phase = G2obj.SetNewPhase(Name='RMCProfile phase',
                               SGData=SGData,
                               cell=cell + [
                                   Volume,
                               ])
     Phase['General']['Name'] = Title
     Phase['General']['Type'] = 'nuclear'
     Phase['General']['AtomPtrs'] = [3, 1, 7, 9]
     Phase['Atoms'] = Atoms
     return Phase