Example #1
0
	def __init__(self, subjects=SUBJECTS, series=SERIES):
		training_ds = IOutils.data_streamer(patients_list=subjects, series_list=series)

		all_data = list(training_ds)

		X,Y = zip(*all_data)


		self.data = X[0]
		self.events = Y[0]

		self.mean = self.data.mean(axis=0)
		self.std = self.data.std(axis=0)

		self.normalize()
Example #2
0
#IOutils.LABEL_NAMES has all the classes we wish to predict
#HI
# initialize logistic regressors
LRs = {}
LRsprocessed = {}
for label_name in IOutils.LABEL_NAMES:
    # each label will have its own logistic regressor
    LRs[label_name] = LogisticRegression()
    LRsprocessed[label_name] = LogisticRegression()

print('Initialized logistic regressors')


# Load training data
# load 1 trial each from 3 patients
train_data = IOutils.data_streamer(mode='train', num_patients=1, num_series=8)

filters = ['alpha', 'beta']

# obtain a validation set
X_valid, Y_valid = train_data.next()

# X_valid = X_valid[]

selected_channels = range(X_valid.shape[1])
# selected_channels = [3,4]

X_valid = X_valid[:,selected_channels]
# print Y_valid
# X_valid = np.array(X_valid)
Y_valid = np.array(Y_valid)
Example #3
0
]


# In[4]:

nn = NeuralNet(layers_list, 
               max_epochs=30, 
               update=nesterov_momentum, 
               update_learning_rate=0.02, 
               verbose=1000, 
               **LF.kwargs)


# In[5]:

training_ds = IOutils.data_streamer(patients_list=[2], series_list=range(1,7))
# nn = BasicCNN(input_shape=(None,42), output_num_units=12, max_epochs=50, hidden=[256, 120], add_drops=[1,1])
vt = IOutils.VectorTransformer()


# In[ ]:

n_repeat_sampling = 1
dataset_count = 0
for X,Y in training_ds:
    X = X.astype(np.float)
    X[np.isnan(X)] = 0
    X = X/X.max()
    wg = window_generator_ND(X, window_size=WINDOW_SIZE)
    dataset_count += 1
    # transform the Ys