def __init__(self, categoryname=[], samplesnumber=15, bool=False):
        self.row = global_value.row
        global_value.row = global_value.row + 1
        try:
            del self.model
        except Exception:
            pass
        try:
            del self.classifier
        except Exception:
            pass

        self.classnumber = len(categoryname)
        self.samplesnumber = samplesnumber
        self.categoryname = categoryname
        self.img_copy = None
        self.cap_num = 0
        self.train_status = 0
        self.class_list = []
        self.percent = 0
        self.image_class = 0

        if bool:
            self.model = kpu.load(0x514000)
            self.classifier = kpu.classifier(self.model, self.classnumber,
                                             self.samplesnumber)
        else:
            pass
Example #2
0
class_num = 3
sample_num = 15
THRESHOLD = 11
class_names = ['class1', 'class2', 'class3']
try:
    del model
except Exception:
    pass
try:
    del classifier
except Exception:
    pass
gc.collect()
model = kpu.load(0x300000)
classifier = kpu.classifier(model, class_num, sample_num)

cap_num = 0
train_status = 0
last_cap_time = 0
last_btn_status = 1
while 1:
    img = sensor.snapshot()
    # capture img
    if train_status == 0:
        if key.value() == 0:
            time.sleep_ms(30)
            if key.value() == 0 and (last_btn_status == 1) and (time.ticks_ms() - last_cap_time > 500):
                last_btn_status = 0
                last_cap_time = time.ticks_ms()
                if cap_num < class_num: