new_n_DnCNN_layers=n_DnCNN_layers, new_n_DAMP_layers=None, new_sampling_rate=None, \ new_BATCH_SIZE=BATCH_SIZE, new_sigma_w=sigma_w, new_n=n, new_m=None, new_training=False) LDAMP.ListNetworkParameters() # tf Graph input x_true = tf.placeholder(tf.float32, [n, BATCH_SIZE]) ## Construct the measurement model and handles/placeholders y_measured = LDAMP.AddNoise(x_true, sigma_w) ## Initialize the variable theta which stores the weights and biases theta_dncnn = LDAMP.init_vars_DnCNN(init_mu, init_sigma) ## Construct the reconstruction model x_hat = LDAMP.DnCNN(y_measured, None, theta_dncnn, training=False) LDAMP.CountParameters() ## Load and Preprocess Test Data if height_img > 50: test_im_name = "./TrainingData/StandardTestData_" + str( height_img) + "Res.npy" else: test_im_name = "./TrainingData/TestData_patch" + str(height_img) + ".npy" test_images = np.load(test_im_name) test_images = test_images[:, 0, :, :] assert (len(test_images) >= BATCH_SIZE), "Requested too much Test data" x_test = np.transpose(
new_sampling_rate=None, \ new_BATCH_SIZE=BATCH_SIZE, new_sigma_w=None, new_n=n, new_m=None, new_training=True) LDAMP.ListNetworkParameters() # tf Graph input sigma_w_tf = tf.placeholder(tf.float32) x_true = tf.placeholder(tf.float32, [n, BATCH_SIZE]) ## Initialize the variable theta which stores the weights and biases theta_dncnn = LDAMP.init_vars_DnCNN(init_mu, init_sigma) ## Construct the measurement model and handles/placeholders y_measured = LDAMP.AddNoise(x_true, sigma_w_tf) ## Construct the reconstruction model x_hat = LDAMP.DnCNN(y_measured, None, theta_dncnn, reuse=True) ## Define loss and optimizer cost = tf.nn.l2_loss(x_true - x_hat) / tf.nn.l2_loss(x_true) LDAMP.CountParameters() ## Load and Preprocess Training Data #Training data was generated by GeneratingTrainingImages.m and ConvertImagestoNpyArrays.py train_images = np.load('./TrainingData/TrainingData_patch' + str(height_img) + '.npy') train_images = train_images[range(n_Train_Images), 0, :, :] assert (len(train_images) >= n_Train_Images), "Requested too much training data" val_images = np.load('./TrainingData/ValidationData_patch' + str(height_img) +
new_sampling_rate=None, \ new_BATCH_SIZE=BATCH_SIZE, new_sigma_w=sigma_w, new_n=n, new_m=None, new_training=False) LDAMP.ListNetworkParameters() # tf Graph input x_true = tf.placeholder(tf.float32, [n, BATCH_SIZE]) ## Initialize the variable theta which stores the weights and biases theta_dncnn = LDAMP.init_vars_DnCNN(init_mu, init_sigma) ## Construct the measurement model and handles/placeholders y_measured = LDAMP.AddNoise(x_true, sigma_w) ## Construct the reconstruction model x_hat = LDAMP.DnCNN( y_measured, None, theta_dncnn, reuse=True ) #Set reuse=true because we initialized BN variables in init_vars_DnCNN LDAMP.CountParameters() ## Load and Preprocess Test Data if height_img > 50: test_im_name = "./TrainingData/StandardTestData_" + str( height_img) + "Res.npy" else: test_im_name = "./TrainingData/TestData_patch" + str(height_img) + ".npy" test_images = np.load(test_im_name) test_images = test_images[:, 0, :, :] assert (len(test_images) >= BATCH_SIZE), "Requested too much Test data"