Example #1
0
def run_HS13(Vec, params_dict):
    obj = HS13_Obj()
    x = Vec(2)
    d = Vec(2)
    HS13_initial_guess(x)
    l = Vec(1)
    l[0] = 1.0
    icon = HS13_Icon()
    ilower = Vec(1)
    HS13_Ibnds(ilower)
    ibnd = ROL.Bounds(ilower, isLower=True)
    lower = Vec(2)
    HS13_Bnd(lower)
    bnd = ROL.Bounds(lower, isLower=True)
    params = ROL.ParameterList(params_dict, "Parameters")
    problem = ROL.OptimizationProblem(obj,
                                      x,
                                      bnd=bnd,
                                      icons=[icon],
                                      imuls=[l],
                                      ibnds=[ibnd])
    solver = ROL.OptimizationSolver(problem, params)
    solver.solve()
    print(x[0], x[1])
    assert HS13_minimum(x)
Example #2
0
def get_rol_bounds(py_lb, py_ub):
    nvars = len(py_lb)
    # if np.all(py_lb == -np.inf) and np.all(py_ub == np.inf):
    #    raise Exception('Bounds not needed lb and ub are -inf, +inf')
    if np.any(py_lb == np.inf):
        raise Exception('A lower bound was set to +inf')
    if np.any(py_ub == -np.inf):
        raise Exception('An upper bound was set to -inf')

    lb, ub = RolVector(nvars), RolVector(nvars)
    for ii in range(nvars):
        lb[ii], ub[ii] = py_lb[ii], py_ub[ii]

    # if np.all(py_lb == -np.inf) and not np.all(py_ub == np.inf):
    #    return ROL.Bounds(ub, False, 1.0)
    # elif np.all(py_ub == np.inf) and not np.all(py_lb == -np.inf):
    #    return ROL.Bounds(lb, True, 1.0)
    # avoid overflow warnings created by numpy_vector.py
    I = np.where(~np.isfinite(py_lb))[0]
    J = np.where(~np.isfinite(py_ub))[0]
    for ii in I:
        lb[ii] = -1e6  # -np.finfo(float).max/100
    for jj in J:
        ub[jj] = 1e6  # np.finfo(float).max/100
    # print(lb.data, ub.data)
    return ROL.Bounds(lb, ub, 1.0)
Example #3
0
        def solve(self):
            """
            Solve the optimization problem and return the optimized
            parameters.
            """

            bnd = self.bounds
            econs = self.constraints[0][0]
            emuls = self.constraints[0][1]
            icons = self.constraints[1][0]
            imuls = self.constraints[1][1]
            if len(icons) > 0:
                zeros = [i.clone() for i in imuls]
                ibnds = [ROL.Bounds(z, isLower=True) for z in zeros]
            else:
                ibnds = []

            rolproblem = ROL.OptimizationProblem(self.rolobjective,
                                                 self.rolvector,
                                                 bnd=bnd,
                                                 econs=econs,
                                                 emuls=emuls,
                                                 icons=icons,
                                                 imuls=imuls,
                                                 ibnds=ibnds)
            x = self.rolvector
            params = ROL.ParameterList(self.params_dict, "Parameters")
            self.solver = ROL.OptimizationSolver(rolproblem, params)
            self.solver.solve()
            return self.problem.reduced_functional.controls.delist(x.dat)
Example #4
0
        def __get_bounds(self):
            bounds = self.problem.bounds
            if bounds is None:
                return None

            controlvec = self.rolvector
            lowervec = controlvec.clone()
            uppervec = controlvec.clone()

            for i in range(len(controlvec.dat)):
                general_lb, general_ub = bounds[i]
                if isinstance(general_lb, (int, float)):
                    lowervec.dat[i]._applyUnary(lambda x: general_lb)
                else:
                    lowervec.dat[i].assign(general_lb)
                if isinstance(general_ub, (int, float)):
                    uppervec.dat[i]._applyUnary(lambda x: general_ub)
                else:
                    uppervec.dat[i].assign(general_ub)

            res = ROL.Bounds(lowervec, uppervec, 1.0)
            # FIXME: without this the lowervec and uppervec get cleaned up too
            # early.  This is a bug in PyROL and we'll hopefully figure that out
            # soon
            self.lowervec = lowervec
            self.uppervec = uppervec
            return res
Example #5
0
def createBounds():
    x_lo = NumpyVector(2)
    x_lo[0] = -1
    x_lo[1] = -1
    x_up = NumpyVector(2)
    x_up[0] = +0.7
    x_up[1] = +0.7
    bnd = ROL.Bounds(x_lo, x_up, 1.0)
    bnd.test()
    return bnd
Example #6
0
def get_problem():
    obj = MyObj()
    x = NumpyVector(2)
    x_lo = NumpyVector(2)
    x_lo[0] = -1
    x_lo[1] = -1
    x_up = NumpyVector(2)
    x_up[0] = +0.7
    x_up[1] = +0.7
    bnd = ROL.Bounds(x_lo, x_up, 1.0)
    optimProblem = ROL.OptimizationProblem(obj, x, bnd=bnd)
    return optimProblem
Example #7
0
File: hs4.py Project: angus-g/pyrol
def run_HS4(Vec, params_dict):
    obj = HS4_Obj()
    x = Vec(2)
    HS4_initial_guess(x)
    lower = Vec(2)
    upper = Vec(2)
    HS4_Bnd(lower, upper)
    bnd = ROL.Bounds(lower, upper, 1.0)
    params = ROL.ParameterList(params_dict, "Parameters")
    problem = ROL.OptimizationProblem(obj, x, bnd=bnd)
    solver = ROL.OptimizationSolver(problem, params)
    solver.solve()
    print(x[0], x[1])
    assert HS4_minimum(x)
Example #8
0
def run_B(algo):
    obj = MyObj()
    paramsDict["Step"]["Type"] = algo
    params = ROL.ParameterList(paramsDict, "Parameters")
    x = NumpyVector(2)
    x_lo = NumpyVector(2)
    x_lo[0] = -1
    x_lo[1] = -1
    x_up = NumpyVector(2)
    x_up[0] = +0.7
    x_up[1] = +0.7
    bnd = ROL.Bounds(x_lo, x_up, 1.0)
    optimProblem = ROL.OptimizationProblem(obj, x, bnd=bnd)
    solver = ROL.OptimizationSolver(optimProblem, params)
    solver.solve()
    assert round(x[0] - 0.7, 6) == 0.0
    assert round(x[1], 6) == 0.0
Example #9
0
def run_HS29(Vec, params_dict):
    params = ROL.ParameterList(params_dict, "Parameters")
    obj = HS29_Obj()
    x = Vec(3)
    x[0] = 1.
    x[1] = 2.
    x[2] = .1
    d = Vec(3)
    d[0] = 1
    d[1] = -1
    d[2] = 1.
    v = Vec(3)
    v[0] = 1
    v[1] = -1
    v[2] = 1.
    # obj.checkGradient(x)
    # obj.checkHessVec(x, d, 4, 1)

    HS29_initial_guess(x)
    l = Vec(1)
    l[0] = 0.0
    con = HS29_Icon()
    jv = Vec(1)
    jv[0] = 1.
    # con.checkApplyJacobian(x, d, jv, 4, 1)
    # con.checkAdjointConsistencyJacobian(jv, d, x)
    # con.checkApplyAdjointHessian(x, jv, d, v, 5, 1)
    ilower = Vec(1)
    HS29_Ibnds(ilower)
    ibnd = ROL.Bounds(ilower, isLower=True)
    problem = ROL.OptimizationProblem(obj,
                                      x,
                                      icons=[con],
                                      imuls=[l],
                                      ibnds=[ibnd])
    solver = ROL.OptimizationSolver(problem, params)
    solver.solve()
    print(x[0], x[1], x[2])
    assert HS29_minimum(x)
Example #10
0
inner_product = L2Inner()

obj = Objective(inner_product)

u = Function(V, name="velocity").assign(vp)
opt = FeVector(u.vector(), inner_product)

# Add control bounds to the problem (uses more RAM)
xlo = Function(V)
xlo.interpolate(Constant(1.0))
x_lo = FeVector(xlo.vector(), inner_product)

xup = Function(V)
xup.interpolate(Constant(5.0))
x_up = FeVector(xup.vector(), inner_product)

bnd = ROL.Bounds(x_lo, x_up, 1.0)

algo = ROL.Algorithm("Line Search", params)

algo.run(opt, obj, bnd)

if comm.ensemble_comm.rank == 0:
    File("res.pvd", comm=comm.comm).write(vp)


if COMM_WORLD.rank == 0:
    func.close()
    mem.close()
            'Feasibility Tolerance Decrease Exponent': 0.9,
            'Print Intermediate Optimization History': True,
            'Subproblem Step Type': 'Line Search',
            'Subproblem Iteration Limit': 3
        }
    },
    'Status Test': {
        'Gradient Tolerance': 1e-15,
        'Relative Gradient Tolerance': 1e-10,
        'Step Tolerance': 1e-16,
        'Relative Step Tolerance': 1e-10,
        'Iteration Limit': 30
    }
}
params = ROL.ParameterList(paramsDict, "Parameters")
bound_constraint = ROL.Bounds(lower, upper, 1.0)

optimProblem = ROL.OptimizationProblem(obj,
                                       x,
                                       bnd=bound_constraint,
                                       econ=volConstr,
                                       emul=l_initializacao)
solver = ROL.OptimizationSolver(optimProblem, params)
solver.solve()

print("aqui mudouuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu")

q.assign(0.1)
interm = obj.resposta()
del x
interm = FeVector(interm.vector(), dot_product)
Example #12
0

obj = Objective()
x = ROL.StdVector(2)
x[0] = -1.0
x[1] = 2.0

lower = ROL.StdVector(2)
lower[0] = -10
lower[1] = -10

upper = ROL.StdVector(2)

upper[0] = 0.5
upper[1] = 0.5
bnd = ROL.Bounds(lower, upper, 1.0)

params = ROL.ParameterList(params_dict, "Parameters")
problem = ROL.OptimizationProblem(obj, x)
solver = ROL.OptimizationSolver(problem, params)
solver.solve()

# algo = ROL.Algorithm("Line Search", params)
# algo.run(x, obj)

print(x[0])
print(x[1])
problem = ROL.OptimizationProblem(obj, x, bnd=bnd)
solver = ROL.OptimizationSolver(problem, params)
solver.solve()
print(x[0])