Example #1
0
def Astar(start, goal, road, cost_map, vehicle, heuristic_map, cursor, static=True,weights=np.array([5., 10., 0.05, 0.2, 0.2, 0.2, 10., 0.5, 10., -2.])):
    # pq - priority queue of states waiting to be extended, multiprocessing
    # node_dict - {(i,j,k):state}
    # edge_dict - store trajectory, {(state1, state2):trajectory}
    # pq, node_dict, edge_dict are better defined outside, for multiprocessing
    # count = 0
    pq = PriorityQueue()
    pq.put(start)
    node_dict = {(start.r_i, start.r_j, int(round(start.v/2))):start, (goal.r_i, goal.r_j, int(round(goal.v/2))):goal}
    edge_dict = {}
    times = 0
    while times<100 and not goal.reach and not pq.empty():
        times += 1
        current = pq.get()
        successors = current.successors(state_dict=node_dict, road=road, goal=goal, vehicle=vehicle, heuristic_map=heuristic_map)
        current.extend = True
        for successor in successors:
            # count += 1
            traj = trajectory(current, successor, cursor)
            if traj is not None:
                if successor == goal:
                    cost = TG.eval_trajectory(traj, cost_map, vehicle=vehicle, road=road, truncate=False, static=static, weights=weights)
                    truncated = False
                else:
                    cost, traj, truncated = TG.eval_trajectory(traj, cost_map, vehicle=vehicle, road=road, static=static, weights=weights)
                if not np.isinf(cost) and traj is not None:
                    State.post_process(current, successor, goal, cost, traj, truncated, pq, node_dict, edge_dict, vehicle, road, cost_map, heuristic_map, cursor, static=static, weights=weights)
    if goal.reach:
        return True, node_dict, edge_dict
    else:
        return False, node_dict, edge_dict
    # return count + len(node_dict) + len(edge_dict)
Example #2
0
def test_diff_init_val():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    q0 = (20., 20., -np.pi/6., -0.01)
    q1 = (70., 30., np.pi/6., -0.01)

    p1, r1 = TG.calc_path(cursor, q0, q1)
    p2, r2 = TG.calc_path_no_init_val(q0,q1)
    print('p={0},r={1}'.format(p1,r1))
    print('p={0},r={1}'.format(p2,r2))

    
    line1 = TG.spiral3_calc(p1, r=r1, q=q0)
    line2 = TG.spiral3_calc(p2, r=r2, q=q0)
    
    # plt.figure(figsize=(80,60))
    plt.plot(line1[:,1], line1[:,2], color='black', linewidth=4)
    plt.plot(line2[:,1], line2[:,2], color='black', linewidth=4)
    
    plt.xlabel('$x (m)$', fontsize=40)
    plt.ylabel('$y (m)$', fontsize=40)
    # plt.text(P0[0]-3, P0[1]+3,'$p_0=k(0)$', fontsize=40)
    # plt.text(P1[0]-3, P1[1]-3,'$p_1=k(\\frac{s_g}{3})$', fontsize=40)
    # plt.text(P2[0]-3, P2[1]-3,'$p_2=k(\\frac{2s_g}{3})$', fontsize=40)
    # plt.text(P3[0]-3, P3[1]-3,'$p_3=k(s_g)$', fontsize=40)

    plt.axis('equal')
    figManager = plt.get_current_fig_manager()
    figManager.window.showMaximized()
    # plt.savefig('img/coordinate_transform.png',dpi=600)
    plt.show()

    cursor.close()
    conn.close()
Example #3
0
def test_traj_sampling():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    q0 = (10., 50., 0., 0.)
    q1 = (40., 60., 0., 0)

    p, r = TG.calc_path(cursor, q0, q1)
    # print('p={0},r={1}'.format(p,r))

    line = TG.spiral3_calc(p, r=r, q=q0)
    # print('Goal Configuration: {0}'.format(line[-1,:]))
    # print(line.shape)

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    # ax2 = fig.add_subplot(122)

    ax1.plot(line[:,1], line[:,2], color='navy', linewidth=2.)
    for i in range(65):
        # ax1.plot(line[i*5, 1], line[i*5, 2], 'ro')
        k = floor(324/64**2*i**2)
        ax1.plot(line[k, 1], line[k, 2], 'ro')
    ax1.plot(line[-1, 1], line[-1, 2], 'ro')

    plt.axis('equal')
    # plt.axis('off')
    plt.show()

    cursor.close()
    conn.close()
Example #4
0
def path_reverse(q0, q1, cursor):
    p, r = TG.calc_path(cursor, q1, q0)
    if r is not None and p[4] > 0.:
        path = TG.spiral3_calc(p, r=r, q=q1)
        path[:,1:] = path[::-1,1:]
        return path, p, r                  # big error
    return None, None, None
Example #5
0
def test_long_path():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    q0 = (10., 50., 0., 0.)
    q1 = (800., 10., 0., 0)

    p, r = TG.calc_path(cursor, q0, q1)
    print('p={0},r={1}'.format(p,r))

    line = TG.spiral3_calc(p, r=r, q=q0)
    print('Goal Configuration: {0}'.format(line[-1,:]))

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    # ax2 = fig.add_subplot(122)

    ax1.plot(line[:,1], line[:,2], color='black', linewidth=4)

    plt.axis('equal')
    # plt.axis('off')
    plt.show()

    cursor.close()
    conn.close()
Example #6
0
def trajectory(start, goal, cursor):
    p, r = TG.calc_path(cursor, start.q, goal.q)
    if r is not None and p[4]>0:
        u = TG.calc_velocity(start.v, start.a, goal.v, p[4])
        if u[3] is not None and u[3]>0:
            path = TG.spiral3_calc(p,r,q=start.q,ref_delta_s=0.2)
            traj = TG.calc_trajectory(u,p,r,s=p[4],path=path,q0=start.q, ref_time=start.time, ref_length=start.length)
            return traj
    return None
Example #7
0
def test_select():
    bd_con = (3.9/40, 7.1*3.0625+1, 2.1*6.25, 3.9*3.141592654/16, 4.1/40)
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()
    initial_guess = TG.select_init_val(cursor, bd_con)
    print(initial_guess)

    initial_guess2 = (0.0145, 0.0037, 23.5967)
    pp = TG.optimize(bd_con, initial_guess2)
    print(pp)
Example #8
0
 def post_process(current, successor, goal, cost, traj, truncated, pq, state_dict, traj_dict, vehicle, road, costmap, heuristic_map,cursor, static=True, weights=np.array([5., 10., 0.05, 0.2, 0.2, 0.2, 10., 0.5, 10., -2.])):
     if not truncated: # successor.reach
         if successor.update(current, cost, traj, traj_dict,heuristic_map,vehicle,static):
             pq.put(successor)
             if successor != goal:
                 i,j,k = successor.r_i, successor.r_j, int(round(successor.v/2))
                 if (i,j,k) not in state_dict:
                     state_dict[(i,j,k)] = successor
             traj_dict[(current, successor)] = traj
     else:
         successor = State.update2(traj, road, heuristic_map, vehicle, static)
         i, j, k = successor.r_i, successor.r_j, int(round(successor.v/2))
         try:
             state = state_dict[(i,j,k)]
             if state.distance(successor) > 1.e-4:
                 traj = trajectory(current, state, cursor)
                 if traj is not None:
                     cost = TG.eval_trajectory(traj, costmap, vehicle=vehicle, road=road, truncate=False, weights=weights)
                     if not np.isinf(cost):
                         successor = state 
                     else:
                         successor = None
                 else:
                     successor = None
             else:
                 successor = state 
         except KeyError:
             state_dict[(i,j,k)] = successor
         finally:
             if successor is not None:
                 if successor.update(current, cost, traj, traj_dict,heuristic_map,vehicle,static):
                     pq.put(successor)
                     traj_dict[(current, successor)] = traj
def Build_InitialGuessTable():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()
    key_queue = [(0,i,0,0,0) for i in range(17)] # 数据库中当前已有数据,可以从数据库中读取已有数据
    # print(key_queue)
    items = 17
    while len(key_queue)>0:
        key = key_queue.pop(0)
        # print(key)
        init_val = db_query(cursor, key)
        # print(init_val)
        nears = neighbors(cursor, key) # 与key的曼哈顿距离为1的点
        # print(nears)
        for (i,j,k,l,m) in nears:
            bd_con = (i/40, 1+3.0625*j, 6.25*k, l*np.pi/16, m/40)
            val = TG.optimize(bd_con, init_val)
            key_val = (i,j,k,l,m, val[0], val[1], val[2])
            items += 1
            print('Progress: {0:%}, Content: {1}'.format(items/1419857, key_val))
            cursor.execute('insert or ignore into InitialGuessTable values (?,?,?,?,?,?,?,?)', key_val)
            key_queue.append((i,j,k,l,m))
        # 数据库操作要注意,插入数据之后要提交才能生效,游标处理要注意
        conn.commit()
    cursor.close()
    conn.close()
Example #10
0
def Build_InitialGuessTable():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()
    key_queue = [(0,i,0,0,0) for i in range(17)] # current daten in database. can also direct select from database
    # print(key_queue)
    items = 17
    while len(key_queue)>0:
        key = key_queue.pop(0)
        # print(key)
        init_val = db_query(cursor, key)
        # print(init_val)
        nears = neighbors(cursor, key) # select keys whose Manhattan Distance to key equals to 1.
        # print(nears)
        for (i,j,k,l,m) in nears:
            bd_con = (i/40, 1+3.0625*j, 6.25*k, l*np.pi/16, m/40)
            val = TG.optimize(bd_con, init_val)
            key_val = (i,j,k,l,m, val[0], val[1], val[2])
            items += 1
            print('Progress: {0:%}, Content: {1}'.format(items/1419857, key_val))
            cursor.execute('insert or ignore into InitialGuessTable values (?,?,?,?,?,?,?,?)', key_val)
            key_queue.append((i,j,k,l,m))
        # 
        conn.commit()
    cursor.close()
    conn.close()
Example #11
0
def trajectory_reverse(start, goal, cursor):
    if start.v<=0. and goal.v<=0:
        q1 = (start.x, start.y, start.theta, start.k)
        q0 = (goal.x, goal.y, goal.theta, goal.k)
        p, r = TG.calc_path(cursor, q0, q1)
        # print(p,r)
        if r is not None and p[4]>0:
            u = TG.calc_velocity(start.v, start.a, goal.v, -p[4])
            # print(u)
            if u[3] is not None and u[3]>0:
                path = TG.spiral3_calc(p,r,q=q0,ref_delta_s=0.2)
                # print(path[:,0])
                path = path[::-1, :] #reverse
                # print(path[:,0])
                traj = TG.calc_trajectory_reverse(u, p, r, s=p[4], path=path, ref_time=start.time, ref_length=start.length)
                return traj
    return None
Example #12
0
def test_coordinate_trasform():
    from math import pi 
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    q0 = (5., 0., pi/30, -0.01)
    q1 = (55., 20., pi/30, 0.01)

    p, r = TG.calc_path(cursor, q0, q1)
    print('p={0},r={1}'.format(p,r))

    sg = p[4]
    # print(sg)

    line = TG.spiral3_calc(p, r=r, q=q0)
    print(line[-1,:])
    P0 = q0[0:2]
    P1 = TG.spiral3_calc(p, r=r, s=sg/3, q=q0)[-1, 1:3]
    P2 = TG.spiral3_calc(p, r=r, s=2*sg/3, q=q0)[-1, 1:3]
    P3 = TG.spiral3_calc(p, r=r, s=sg, q=q0)[-1, 1:3]

    # plt.figure(figsize=(80,60))
    plt.plot(line[:,1], line[:,2], color='black', linewidth=4)
    # plt.plot(P0[0], P0[1], 'go', linewidth=4)
    # plt.plot(P1[0], P1[1], 'go', linewidth=4)
    # plt.plot(P2[0], P2[1], 'go', linewidth=4)
    # plt.plot(P3[0], P3[1], 'go', linewidth=4)
    plt.scatter(P0[0], P0[1], s=200)
    plt.scatter(P1[0], P1[1], s=200)
    plt.scatter(P2[0], P2[1], s=200)
    plt.scatter(P3[0], P3[1], s=200)
    plt.xlabel('$x (m)$', fontsize=40)
    plt.ylabel('$y (m)$', fontsize=40)
    plt.text(P0[0]-3, P0[1]+3,'$p_0=k(0)$', fontsize=40)
    plt.text(P1[0]-3, P1[1]-3,'$p_1=k(\\frac{s_g}{3})$', fontsize=40)
    plt.text(P2[0]-3, P2[1]-3,'$p_2=k(\\frac{2s_g}{3})$', fontsize=40)
    plt.text(P3[0]-3, P3[1]-3,'$p_3=k(s_g)$', fontsize=40)

    plt.axis('equal')
    figManager = plt.get_current_fig_manager()
    figManager.window.showMaximized()
    # plt.savefig('img/coordinate_transform.png',dpi=600)
    plt.show()

    cursor.close()
    conn.close()
Example #13
0
def test_workspace():
    # veh = Vehicle(trajectory=np.array([[-1.,-1.,2.,30.,0.,0.,0.,0.,0.,0.]]))
    p = (0.01, 0.0070893847415232263, 0.0056488099243383414, -0.01, 109.61234595301809)
    center_line = TG.spiral3_calc(p, s=100., q=(2.,15.,0))
    road = Road(center_line=center_line)
    #
    cfg = road.ij2xy(5,-4)
    traj = np.array([[-1,-1,cfg[0],cfg[1],cfg[2],cfg[3],0.,0.,0.,0.]])
    veh = Vehicle(trajectory=traj)
    #
    lane_costs = [0.3,0.6,0.9]
    #static_obsts
    cs1 = road.ij2xy(20,8)
    cs2 = road.ij2xy(50,-6)
    traj1 = np.array([[-1,-1,cs1[0],cs1[1],cs1[2],cs1[3],0.,0.,0.,0.]])
    traj2 = np.array([[-1,-1,cs2[0],cs2[1],cs2[2],cs2[3],0.,0.,0.,0.]])
    ob1 = Vehicle(trajectory=traj1)
    ob2 = Vehicle(trajectory=traj2)
    obsts = [ob1,ob2]
    #
    ws = Workspace(vehicle=veh, road=road, lane_costs=lane_costs, static_obsts=obsts)
    # test_disk = ws.disk_filter(2)
    # test_veh = ws.vehicle_filter(theta = np.pi/4)
    #
    fig = plt.figure()
    ax1 = fig.add_subplot(111)

    lane_map = 0.2*ws.lane_grids[0] + 0.4*ws.lane_grids[1]
    lane_map = np.where(lane_map > 0.4, 0.4, lane_map)
    lane_map += 0.6*ws.lane_grids[2]
    lane_map = np.where(lane_map > 0.6, 0.6, lane_map)


    ax1.imshow(lane_map, cmap=plt.cm.Greens, origin="lower",extent=(0.,100.,0.,100.))
    # ax1.colorbar()
    import pylab as pl
    mycmap = plt.cm.Greens
    mynames=['low cost dense','intermediate cost dense','high cost dense']
    for entry in [0.2,0.4,0.6]:
        mycolor = mycmap(255)
        pl.plot(0, 0, "-", c=mycolor, alpha=entry, label=mynames[int(entry*5-1)], linewidth=8)
    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='black', linewidth=2.)
        # else:
        #     ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='black', linewidth=1.)
    # for i in range(road.grid_num_longitudinal+1):
    #     ax1.plot(road.lateral_lines[:,2*i], road.lateral_lines[:,2*i+1],color='black', linewidth=0.3)
    #ax1.imshow(ws.cost_filter, cmap=plt.cm.Greens, origin="lower",extent=(0.,ws.resolution*ws.cost_filter.shape[1],0.,ws.resolution*ws.cost_filter.shape[0]))
    # np.savetxt('cost_filter.txt',ws.cost_filter,fmt='%i',delimiter=' ')
    # plt.savefig('img/road_cost.png', dpi=600)
    # plt.axis('equal')
    plt.legend()
    plt.xlabel('$x (m)$', fontsize=20)
    plt.ylabel('$y (m)$', fontsize=20)

    # plt.savefig('img/road_cost.png', dpi=600)
    plt.show()
Example #14
0
def test_traj():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()
    q0 = (100.,100.,0., 0.02)
    q1 = (125.,130.,np.pi/6,-0.02)
    p,r = TG.calc_path(cursor,q0,q1)
    print('p={0},r={1}'.format(p,r))
    cursor.close()
    conn.close()
Example #15
0
def test_cost_maps5():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    p = (0.01, 0.0070893847415232263, 0.0056488099243383414, -0.01, 109.61234595301809)
    center_line = TG.spiral3_calc(p, s=100.,q=(3.,25.,0.))
    road = Road(center_line, ref_grid_width=0.5, ref_grid_length=1.)

    cost_maps = np.zeros((150,500,500))
    with open('scenario_5/cost_maps.pickle', 'rb') as f1:
        cost_maps = pickle.load(f1)

    # heuristic_maps = np.zeros((150,500,500))
    # with open('scenario_5/heuristic_maps.pickle', 'rb') as f2:
    #     heuristic_maps = pickle.load(f2)

    heuristic_maps = np.zeros((150,500,500))
    goal = tuple(road.sl2xy(90.,0.))
    for i in range(150):
        hm = heuristic_map_constructor(goal, cost_maps[i,:,:])
        heuristic_maps[i,:,:] = hm
    with open('scenario_5/heuristic_maps.pickle','wb') as f2:  
        pickle.dump(heuristic_maps, f2)

    fig = plt.figure()
    ax1 = fig.add_subplot(331)
    ax2 = fig.add_subplot(332)
    ax3 = fig.add_subplot(333)
    ax4 = fig.add_subplot(334)
    ax5 = fig.add_subplot(335)
    ax6 = fig.add_subplot(336)
    ax7 = fig.add_subplot(337)
    ax8 = fig.add_subplot(338)
    ax9 = fig.add_subplot(339)

    ax = [ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8,ax9]

    for i in range(9):
        # cost_map = cost_maps[int(i*10),:,:]
        # cost_map = np.where(cost_map>np.finfo('d').max, 1., cost_map)
        # ax[i].imshow(cost_map, cmap=plt.cm.Blues, origin='lower', extent=(0,100,0,100))
        heuristic_map = heuristic_maps[int(i*10),:,:]
        ax[i].imshow(heuristic_map, cmap=plt.cm.Blues, origin='lower', extent=(0,100,0,100))
    plt.show()
    # print(heuristic_maps[0,:,:])
    # hm = heuristic_map_constructor(goal, cost_maps[0,:,:])
    # for i in range(500):
    #     for j in range(500):
    #         if not np.isinf(hm[i,j]):
    #             print(hm[i,j])
    # plt.imshow(hm, cmap=plt.cm.Blues, origin='lower', extent=(0,100,0,100))
    # plt.show()

    cursor.close()
    conn.close()
Example #16
0
def test_different_initval():
    # conn = sqlite3.connect('InitialGuessTable.db')
    # cursor = conn.cursor()

    q0 = (0.,0.,0.,0.07)
    q1 = (43.21, 10.53, 0.47, -0.03)

    # init_val = (-0.011680200827827, 0.027105283154636, 45.369339753738281)
    init_val = (-0.010248903904925, 0.000396612698255, 45.158514552345096)
    bd_con = (0.07, 43.21, 10.53, 0.47, -0.03)
    pp = TG.optimize(bd_con, init_val=init_val)
    print(pp)
Example #17
0
def trajectory_reverse(vi, vg, path, p, r, ai=0., cost_map=np.zeros((500,500)),  \
    truncate=False, p_lims=(0.2,0.15, 6.,-4., 2.1,-6.1,10.)):

    if vi <= 0 and vg <= 0 and path is not None and p[4] > 0:
        # u = TG.calc_velocity(vi, ai, vg, -p[4])
        u = calc_velocity(vi, vg, -p[4])
        if u[3] is not None and u[3]>0:
            # traj = TG.calc_trajectory_reverse(u, p, r, s=p[4], path=path, ref_time=0., ref_length=0.)
            traj = calc_trajectory_reverse(u, p, r, s=p[4], path=path, ref_time=0., ref_length=0.)
            cost = TG.eval_trajectory(traj, costmap=cost_map, truncate=truncate, p_lims=p_lims)
            if not np.isinf(cost):
                return traj, u
    return None, None
Example #18
0
def test_database():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()
    k0,k1=0.,0.
    cursor.execute('select p1,p2,sg from InitialGuessTable where k0=? and k1=? and y1>=0 and theta1>=0',(int(k0*40),int(k1*40)))
    pps = cursor.fetchall()
    t=0
    for pp in pps:
        if pp[2]>0:
            t+=1
            path = TG.spiral3_calc(p=(k0,pp[0],pp[1],k1,pp[2]))
            plt.plot(path[:,1],path[:,2])
    print(t)
    plt.title('k0 = {0}, k1 = {1}'.format(k0,k1))
    plt.axis('equal')
    plt.savefig('img/initialguesstable(k0={0}k1={1}).png'.format(k0,k1),dpi=600)
    plt.show()
    cursor.close()
    conn.close()
Example #19
0
def eval_trajectory(traj, costmap, vehicle=Env.Vehicle(), resolution=0.2, time_resolution=0.1, static=True, weights=np.array([1.5, 2., 2., 3.]), p_lims=(0.2,0.15,20.01,-0.01,2.1,-6.1,9.81), truncate=False):
    """
    evaluate the cost of given trajctory
    trajectory - [(t, s, x, y, theta, k, dk, v, a)]
    weights - trajectory length, trajectory time, end velocity, environment
    p_lims - { k_m, dk_m, v_max, v_min, a_max, a_min, ac_m }
    """
    cost_matrix = np.zeros((traj.shape[0], 6)) # k, dk, v, a, a_c, env
    cost_matrix[:,0] = np.where(np.abs(traj[:,5])>p_lims[0], np.inf, 0.) # k
    cost_matrix[:,1] = np.where(np.abs(traj[:,6])>p_lims[1], np.inf, 0.) # dk
    cost_matrix[:,2] = np.where(traj[:,7]>p_lims[2], np.inf, 0.) # v
    cost_matrix[:,2] = np.where(traj[:,7]<p_lims[3], np.inf, 0.) # v
    cost_matrix[:,3] = np.where(traj[:,8]>p_lims[4], np.inf, 0.) # a
    cost_matrix[:,3] = np.where(traj[:,8]<p_lims[5], np.inf, 0.) # a
    cost_matrix[:,4] = np.where(np.abs(traj[:,7]**2 * traj[:,5])>p_lims[6], np.inf, 0.) # a_c
    cost_matrix[:,5] = weights[3] * TG.query_cost(traj,costmap,static=static,vehicle=vehicle,resolution=resolution, time_resolution=time_resolution)[:,0]
    cost_sum = cost_matrix.sum()
    if np.isinf(cost_sum):
        return np.inf
    return cost_sum*(traj[1,1]-traj[0,1]) + weights[0]*(traj[-1,1]-traj[0,1]) - 0.6*np.abs(traj[-1,7]) #+ weights[1]*(traj[-1,0] - traj[0,0]) #+ weights[2]*np.abs(traj[-1,7])
Example #20
0
def test_optimize():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    

    bd_con = (-0.01, 70., 30., np.pi/6, 0.01)
    init_val = (0., 0., 100)
    # init_val = (-0.0033333333333333335, 0.0033333333333333335, 78.775724936630581)

    pp1 = TG.optimize(bd_con, init_val=init_val)
    p1 = (bd_con[0], pp1[0], pp1[1], bd_con[4], pp1[2])
    r1 = (TG.__a(p1), TG.__b(p1), TG.__c(p1), TG.__d(p1))
    print('p1 = {0}'.format(p1))




    # q0 = (0., 0., 0., -0.01)
    # q1 = (70., 30., np.pi/6., 0.01)

    # p2, r2 = TG.calc_path(cursor, q0, q1)
    # print('p2 = {0}'.format(p2))


    line1 = TG.spiral3_calc(p1, r=r1, q=(0.,0.,0.))
    # line2 = TG.spiral3_calc(p2, r=r2, q=q0)

    plt.plot(line1[:,1], line1[:,2], color='black', linewidth=4)
    # plt.plot(line2[:,1], line2[:,2], color='green', linewidth=4)

    plt.axis('equal')
    # figManager = plt.get_current_fig_manager()
    # figManager.window.showMaximized()
    # plt.savefig('img/coordinate_transform.png',dpi=600)
    plt.show()


    cursor.close()
    conn.close()
Example #21
0
def extend_plot():
    # database connection
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    # plot
    fig = plt.figure()
    ax1 = fig.add_subplot(111)

    # road center line points
    p = (0.,0.,0.,0.,90.) # (p0~p3, sg)
    center_line = TG.spiral3_calc(p, q=(5.,50.,0.))
    # print(center_line)

    # road
    road = Road(center_line)

    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='green', linewidth=1.5)
        else:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='black', linewidth=0.3)
    for i in range(road.grid_num_longitudinal+1):
        ax1.plot(road.lateral_lines[:,2*i], road.lateral_lines[:,2*i+1],color='black', linewidth=0.3)

    # vehicle
    cfg0 = road.sl2xy(5.,0.)
    veh = Vehicle(trajectory=np.array([[-1.,-1.,cfg0[0], cfg0[1], cfg0[2], cfg0[3], 0.,5.,0.]]))


    # workspace
    ws = Workspace(vehicle=veh, road=road)
    road_lane_bitmap0 = ws.lane_grids[0]
    road_lane_bitmap1 = ws.lane_grids[1]
    road_lane_bitmap2 = ws.lane_grids[2]
    # write the lane bitmaps into files
    # np.savetxt('road_lane_bitmap0.txt', road_lane_bitmap0, fmt='%i',delimiter=' ')
    # np.savetxt('road_lane_bitmap1.txt', road_lane_bitmap1, fmt='%i',delimiter=' ')
    # np.savetxt('road_lane_bitmap2.txt', road_lane_bitmap2, fmt='%i',delimiter=' ')
    # road bitmap
    road_bitmap = road_lane_bitmap0 + road_lane_bitmap1 + road_lane_bitmap2
    road_bitmap = np.where(road_bitmap>1.e-6, 1., 0.)
    # np.savetxt('road_bitmap.txt', road_bitmap, fmt='%i', delimiter=' ')
    # base bitmap
    base = 1. - road_bitmap
    # base = np.where(base>1.e-6, np.inf, 0)
    # np.savetxt('base_bitmap.txt', base, fmt='%i', delimiter=' ')

    # static obstacles
    cfg1 = road.sl2xy(25., 0.)
    cfg2 = road.sl2xy(25., -road.lane_width)
    cfg3 = road.sl2xy(55.,0.)
    cfg4 = road.sl2xy(55., road.lane_width)
    obst1 = Vehicle(trajectory=np.array([[-1.,-1.,cfg1[0], cfg1[1], cfg1[2], cfg1[3], 0.,0.,0.]]))
    obst2 = Vehicle(trajectory=np.array([[-1.,-1.,cfg2[0], cfg2[1], cfg2[2], cfg2[3], 0.,0.,0.]]))
    obst3 = Vehicle(trajectory=np.array([[-1.,-1.,cfg3[0], cfg3[1], cfg3[2], cfg3[3], 0.,0.,0.]]))
    obst4 = Vehicle(trajectory=np.array([[-1.,-1.,cfg4[0], cfg4[1], cfg4[2], cfg4[3], 0.,0.,0.]]))
    base += ws.grids_occupied_by_polygon(obst1.vertex)
    base += ws.grids_occupied_by_polygon(obst2.vertex)
    base += ws.grids_occupied_by_polygon(obst3.vertex)
    base += ws.grids_occupied_by_polygon(obst4.vertex)
    base = np.where(base>1.e-6, 1.,0.)
    # np.savetxt('scenario_1/static_bitmap.txt', base, fmt='%i', delimiter=' ')
    
    # collision map
    collision_map = cv2.filter2D(base, -1, ws.collision_filter)
    collision_map = np.where(collision_map>1.e-6, 1., 0.)
    # np.savetxt('scenario_1/collision_bitmap.txt', collision_map, fmt='%i', delimiter=' ')

    # cost map
    cost_map = cv2.filter2D(collision_map, -1, ws.cost_filter)
    cost_map += collision_map
    cost_map = np.where(cost_map>1., np.inf, cost_map)
    cost_map = np.where(cost_map<1.e-16, 0., cost_map)
    # np.savetxt('scenario_1/cost_grayscale_map.txt', cost_map, fmt='%1.6f', delimiter='\t')

    # plot
    # fig = plt.figure()
    # ax1 = fig.add_subplot(111)
    costmap_plot = np.where( cost_map >1., 1., cost_map)
    ax1.imshow(costmap_plot, cmap=plt.cm.Reds, origin="lower",extent=(0.,ws.resolution*ws.row,0.,ws.resolution*ws.column))
    ax1.plot(center_line[:,1], center_line[:,2], color='maroon', linestyle='--', linewidth=2.)


    count = 0
    start_state = State(road=road, r_s=5., r_l=0., v=5.)
    ax1.plot(start_state.x, start_state.y, 'rs')
    

    current = start_state
    outs = current.out_set(road)
    for (i,j,v,a) in outs:
        # print(i,j,v,a)
        next_state = State(road=road, r_i=i, r_j=j, v=v)
        # print(current.q, next_state.q)
        p, r = TG.calc_path(cursor, current.q, next_state.q)
        if r is not None:
            if p[4]>0:
                u = TG.calc_velocity(current.v, a, v, p[4])
                if u[3] is not None and u[3]>0:
                    path = TG.spiral3_calc(p,r,q=current.q,ref_delta_s=0.2)
                    traj = TG.calc_trajectory(u,p,r,s=p[4],path=path,q0=current.q, ref_time=current.time, ref_length=current.length)
                    # if next_state == goal_state:
                    #     cost = TG.eval_trajectory(traj, cost_map, vehicle=veh, road=road, truncate=False)
                    # else:
                    cost, traj = TG.eval_trajectory(traj, cost_map, vehicle=veh, road=road)
                    if not np.isinf(cost) and traj is not None:
                        count += 1
                        next_state.update(cost, traj, current, road)
                        # plot
                        ax1.plot(traj[:,2], traj[:,3],  linewidth=1.)
                        ax1.text(traj[-1,2], traj[-1,3],'{0:.2f}'.format(cost))

    
    # close database connection
    cursor.close()
    conn.close()

    #
    # plt.legend()
    plt.axis('equal')
    # plt.savefig('scenario_1/planning_result.png', dpi=600)
    plt.show()
Example #22
0
def costmap_plot():
    # plot
    fig = plt.figure()
    ax1 = fig.add_subplot(111)

    # road center line points
    p = (0.,0.,0.,0.,90.) # (p0~p3, sg)
    center_line = TG.spiral3_calc(p, q=(5.,50.,0.))
    # print(center_line)

    # road
    road = Road(center_line)

    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='green', linewidth=1.5)
        else:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='black', linewidth=0.3)
    for i in range(road.grid_num_longitudinal+1):
        ax1.plot(road.lateral_lines[:,2*i], road.lateral_lines[:,2*i+1],color='black', linewidth=0.3)

    # vehicle
    cfg0 = road.sl2xy(5.,0.)
    veh = Vehicle(trajectory=np.array([[-1.,-1.,cfg0[0], cfg0[1], cfg0[2], cfg0[3], 0.,5.,0.]]))


    # workspace
    ws = Workspace(vehicle=veh, road=road)
    road_lane_bitmap0 = ws.lane_grids[0]
    road_lane_bitmap1 = ws.lane_grids[1]
    road_lane_bitmap2 = ws.lane_grids[2]
    # write the lane bitmaps into files
    # np.savetxt('road_lane_bitmap0.txt', road_lane_bitmap0, fmt='%i',delimiter=' ')
    # np.savetxt('road_lane_bitmap1.txt', road_lane_bitmap1, fmt='%i',delimiter=' ')
    # np.savetxt('road_lane_bitmap2.txt', road_lane_bitmap2, fmt='%i',delimiter=' ')
    # road bitmap
    road_bitmap = road_lane_bitmap0 + road_lane_bitmap1 + road_lane_bitmap2
    road_bitmap = np.where(road_bitmap>1.e-6, 1., 0.)
    # np.savetxt('road_bitmap.txt', road_bitmap, fmt='%i', delimiter=' ')
    # base bitmap
    base = 1. - road_bitmap
    # base = np.where(base>1.e-6, np.inf, 0)
    # np.savetxt('base_bitmap.txt', base, fmt='%i', delimiter=' ')

    # static obstacles
    cfg1 = road.sl2xy(25., 0.)
    cfg2 = road.sl2xy(25., -road.lane_width)
    cfg3 = road.sl2xy(55.,0.)
    cfg4 = road.sl2xy(55., road.lane_width)
    obst1 = Vehicle(trajectory=np.array([[-1.,-1.,cfg1[0], cfg1[1], cfg1[2], cfg1[3], 0.,0.,0.]]))
    obst2 = Vehicle(trajectory=np.array([[-1.,-1.,cfg2[0], cfg2[1], cfg2[2], cfg2[3], 0.,0.,0.]]))
    obst3 = Vehicle(trajectory=np.array([[-1.,-1.,cfg3[0], cfg3[1], cfg3[2], cfg3[3], 0.,0.,0.]]))
    obst4 = Vehicle(trajectory=np.array([[-1.,-1.,cfg4[0], cfg4[1], cfg4[2], cfg4[3], 0.,0.,0.]]))
    base += ws.grids_occupied_by_polygon(obst1.vertex)
    base += ws.grids_occupied_by_polygon(obst2.vertex)
    base += ws.grids_occupied_by_polygon(obst3.vertex)
    base += ws.grids_occupied_by_polygon(obst4.vertex)
    base = np.where(base>1.e-6, 1.,0.)
    # np.savetxt('scenario_1/static_bitmap.txt', base, fmt='%i', delimiter=' ')
    
    # collision map
    collision_map = cv2.filter2D(base, -1, ws.collision_filter)
    collision_map = np.where(collision_map>1.e-6, 1., 0.)
    # np.savetxt('scenario_1/collision_bitmap.txt', collision_map, fmt='%i', delimiter=' ')

    # cost map
    cost_map = cv2.filter2D(collision_map, -1, ws.cost_filter)
    cost_map += collision_map
    cost_map = np.where(cost_map>1., np.inf, cost_map)
    cost_map = np.where(cost_map<1.e-16, 0., cost_map)
    # np.savetxt('scenario_1/cost_grayscale_map.txt', cost_map, fmt='%1.6f', delimiter='\t')

    # plot
    # fig = plt.figure()
    # ax1 = fig.add_subplot(111)
    costmap_plot = np.where( cost_map >1., 1., cost_map)
    ax1.imshow(costmap_plot, cmap=plt.cm.Reds, origin="lower",extent=(0.,ws.resolution*ws.row,0.,ws.resolution*ws.column))
    ax1.plot(center_line[:,1], center_line[:,2], color='maroon', linestyle='--', linewidth=2.)
    plt.axis('equal')
    plt.show()
Example #23
0
def test():
    p = (0.01, 0.0070893847415232263, 0.0056488099243383414, -0.01, 109.61234595301809)
    center_line = TG.spiral3_calc(p, q=(0.,0.,0.))
    print(center_line[-1,:])
Example #24
0
def senarios_4():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    fig = plt.figure()
    ax = fig.add_subplot(111)

    p = (0.01, 0.0070893847415232263, 0.0056488099243383414, -0.01, 109.61234595301809)
    center_line = TG.spiral3_calc(p, s=100.,q=(3.,25.,0.))
    road = Road(center_line, ref_grid_width=0.5, ref_grid_length=1.)

    # ax.plot(center_line[:,1], center_line[:,2], color='red', linewidth=1.)
    ax.plot(road.lateral_lines[:,0], road.lateral_lines[:,1],color='green', linewidth=1.)
    ax.plot(road.lateral_lines[:,-2], road.lateral_lines[:,-1],color='green', linewidth=1.)
    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='green', linewidth=1.)

    #
    # ws = Workspace(road=road, lane_costs=[0.4,0.1,0.2])
    # cost_map_base = ws.lane_map
    # ax.imshow(ws.lane_map, cmap=plt.cm.Blues, origin='lower', extent=(0,100,0,100))

    s1 = State(time=0.,length=0.,road=road,r_s=25.,r_l=road.lane_width, v=15.)
    g1 = State(road=road,r_s=95.,r_l=road.lane_width,v=15.)
    traj1 = trajectory_forward(s1,g1,cursor)
    # print(traj1[-1,:])
    # ax.plot(traj1[:,2], traj1[:,3], color='navy', linewidth=2.)

    s2 = State(time=0.,length=0.,road=road,r_s=20.,r_l=0.,v=6.)
    g2 = State(road=road,r_s=95.,r_l=0.,v=6.)
    traj2 = trajectory_forward(s2,g2,cursor)
    # print(traj2[-1,:])
    # ax.plot(traj2[:,2], traj2[:,3], color='navy', linewidth=2.)

    cfg3 = road.sl2xy(30.,-road.lane_width)
    obst_s = Vehicle(trajectory=np.array([[-1.,-1.,cfg3[0], cfg3[1], cfg3[2], cfg3[3], 0.,0.,0.]]))

    cfg0 = road.sl2xy(5.,0.)
    veh0 = Vehicle(trajectory=np.array([[-1.,-1.,cfg0[0], cfg0[1], cfg0[2], cfg0[3], 0.,0.,0.]]))
    cfg1 = road.sl2xy(90.,0.)
    veh1 = Vehicle(trajectory=np.array([[-1.,-1.,cfg1[0], cfg1[1], cfg1[2], cfg1[3], 0.,0.,0.]]))

    ax.plot(cfg0[0], cfg0[1], 'ko')
    ax.text(cfg0[0], cfg0[1]+0.4, 'Start')
    ax.plot(cfg1[0], cfg1[1], 'ko')
    ax.text(cfg1[0], cfg1[1]+0.4, 'Goal')

    #
    codes6 = [Path.MOVETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.CLOSEPOLY,
        ]

    verts_s = [tuple(obst_s.vertex[i]) for i in range(6)]
    verts_s.append(verts_s[0])
    ax.add_patch(patches.PathPatch(Path(verts_s, codes6), facecolor='cyan'))

    verts0 = [tuple(veh0.vertex[i]) for i in range(6)]
    verts0.append(verts0[0])
    ax.add_patch(patches.PathPatch(Path(verts0, codes6), facecolor='green', alpha=0.5))

    verts1 = [tuple(veh1.vertex[i]) for i in range(6)]
    verts1.append(verts1[0])
    ax.add_patch(patches.PathPatch(Path(verts1, codes6), facecolor='red', alpha=0.5))

    for i in range(20):
        state1 = trajectory_interp(traj1, i*0.2)
        state2 = trajectory_interp(traj2, i*0.2)
        if state1 is not None:
            obst_d1 = Vehicle(trajectory=np.array([[-1.,-1.,state1[2], state1[3], state1[4], 0., 0.,0.,0.]]))
            verts_d1 = [tuple(obst_d1.vertex[i]) for i in range(6)]
            verts_d1.append(verts_d1[0])
            ax.add_patch(patches.PathPatch(Path(verts_d1, codes6), facecolor='cyan', alpha=(i+1)/20.))
        if state2 is not None:
            obst_d2 = Vehicle(trajectory=np.array([[-1.,-1.,state2[2], state2[3], state2[4], 0., 0.,0.,0.]]))
            verts_d2 = [tuple(obst_d2.vertex[i]) for i in range(6)]
            verts_d2.append(verts_d2[0])
            ax.add_patch(patches.PathPatch(Path(verts_d2, codes6), facecolor='cyan', alpha=(i+1)/20.))

    #
    # cost_maps = np.zeros((150,500,500))
    # grids_s = ws.grids_occupied_by_polygon(obst_s.vertex)
    # lane_grids = sum(ws.lane_grids)
    # lane_grids = np.where(lane_grids>1.,1., lane_grids)
    # off_road_map = 1. - lane_grids
    # grids_s += off_road_map

    # for i in range(150):
    #     obst_map = np.zeros((500,500))
    #     obst_map += grids_s
    #     state1 = trajectory_interp(traj1, i/10.)
    #     state2 = trajectory_interp(traj2, i/10.)
    #     if state1 is not None:
    #         obst_d1 = Vehicle(trajectory=np.array([[-1.,-1.,state1[2], state1[3], state1[4], 0., 0.,0.,0.]]))
    #         grids_d1 = ws.grids_occupied_by_polygon(obst_d1.vertex)
    #         obst_map += grids_d1
    #     if state2 is not None:
    #         obst_d2 = Vehicle(trajectory=np.array([[-1.,-1.,state2[2], state2[3], state2[4], 0., 0.,0.,0.]]))
    #         grids_d2 = ws.grids_occupied_by_polygon(obst_d2.vertex)
    #         obst_map += grids_d2

    #     collision_map = cv2.filter2D(obst_map, -1, ws.collision_filter)
    #     collision_map = np.where(collision_map>1.e-6, 1., 0.)
    #     cost_map = cv2.filter2D(collision_map, -1, ws.cost_filter)
    #     cost_map += collision_map
    #     cost_map = np.where(cost_map>1., np.inf, cost_map)
    #     cost_map = np.where(cost_map<1.e-8, 0., cost_map)
    #     cost_map += cost_map_base
    #     cost_maps[i,:,:] = cost_map
    # with open('scenario_4/cost_maps.pickle','wb') as f1:  
    #     pickle.dump(cost_maps, f1)




    # plt.xlabel('$x (m)$', fontsize=20)
    # plt.ylabel('$y (m)$', fontsize=20)
    plt.axis('equal')
    # plt.axis('off')
    # plt.savefig('scenario_4/obstacles2.png', dpi=600)
    plt.show()

    cursor.close()
    conn.close()
Example #25
0
def env_plot():
    # plot
    fig = plt.figure()
    ax1 = fig.add_subplot(111)

    # road center line points
    p = (0.,0.,0.,0.,90.) # (p0~p3, sg)
    center_line = TG.spiral3_calc(p, q=(5.,50.,0.))
    # print(center_line)

    # road
    road = Road(center_line)

    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='green', linewidth=1.5)
        else:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='black', linewidth=0.3)
    for i in range(road.grid_num_longitudinal+1):
        ax1.plot(road.lateral_lines[:,2*i], road.lateral_lines[:,2*i+1],color='black', linewidth=0.3)

    # vehicle
    cfg0 = road.sl2xy(5.,0.)
    veh = Vehicle(trajectory=np.array([[-1.,-1.,cfg0[0], cfg0[1], cfg0[2], cfg0[3], 0.,5.,0.]]))


    # workspace
    ws = Workspace(vehicle=veh, road=road)

    # static obstacles
    cfg1 = road.sl2xy(25., 0.)
    cfg2 = road.sl2xy(25., -road.lane_width)
    cfg3 = road.sl2xy(55.,0.)
    cfg4 = road.sl2xy(55., road.lane_width)
    obst1 = Vehicle(trajectory=np.array([[-1.,-1.,cfg1[0], cfg1[1], cfg1[2], cfg1[3], 0.,0.,0.]]))
    obst2 = Vehicle(trajectory=np.array([[-1.,-1.,cfg2[0], cfg2[1], cfg2[2], cfg2[3], 0.,0.,0.]]))
    obst3 = Vehicle(trajectory=np.array([[-1.,-1.,cfg3[0], cfg3[1], cfg3[2], cfg3[3], 0.,0.,0.]]))
    obst4 = Vehicle(trajectory=np.array([[-1.,-1.,cfg4[0], cfg4[1], cfg4[2], cfg4[3], 0.,0.,0.]]))

    verts1 = [tuple(obst1.vertex[i]) for i in range(6)]
    verts1.append(verts1[0])
    verts2 = [tuple(obst2.vertex[i]) for i in range(6)]
    verts2.append(verts2[0])
    verts3 = [tuple(obst3.vertex[i]) for i in range(6)]
    verts3.append(verts3[0])
    verts4 = [tuple(obst4.vertex[i]) for i in range(6)]
    verts4.append(verts4[0])
    codes = [Path.MOVETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.CLOSEPOLY,
        ]
    path1 = Path(verts1, codes)
    patch1 = patches.PathPatch(path1,facecolor='green')
    ax1.add_patch(patch1)
    path2 = Path(verts2, codes)
    patch2 = patches.PathPatch(path2,facecolor='green')
    ax1.add_patch(patch2)
    path3 = Path(verts3, codes)
    patch3 = patches.PathPatch(path3,facecolor='green')
    ax1.add_patch(patch3)
    path4 = Path(verts4, codes)
    patch4 = patches.PathPatch(path4,facecolor='green')
    ax1.add_patch(patch4)
    plt.axis('equal')
    plt.show()
Example #26
0
def test_road():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    p = (0.01, 0.0070893847415232263, 0.0056488099243383414, -0.01, 109.61234595301809)
    center_line = TG.spiral3_calc(p, s=70., q=(5.,30.,np.pi/9))
    road = Road(center_line, ref_grid_width=1, ref_grid_length=2.)

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    # ax1.plot(center_line[:,1], center_line[:,2], color='red', linestyle='--', linewidth=2.)
    ax1.plot(center_line[:,1], center_line[:,2], color='red', linewidth=1.)
    ax1.plot(road.lateral_lines[:,0], road.lateral_lines[:,1],color='red', linewidth=1.)
    ax1.plot(road.lateral_lines[:,-2], road.lateral_lines[:,-1],color='green', linewidth=1.)

    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='green', linewidth=1.)
        else:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='black', linewidth=0.3)
    for i in range(road.grid_num_longitudinal+1):
        ax1.plot(road.lateral_lines[:,2*i], road.lateral_lines[:,2*i+1],color='black', linewidth=0.3)
    #
    cfg0 = road.ij2xy(2,-4)
    veh = Vehicle(trajectory=np.array([[-1.,-1.,cfg0[0], cfg0[1], cfg0[2], cfg0[3], 0.,5.,0.]]))
    verts0 = [tuple(veh.vertex[i]) for i in range(6)]
    verts0.append(verts0[0])

    cfg1 = road.ij2xy(15, -4)
    cfg2 = road.ij2xy(15, 0)
    cfg3 = road.ij2xy(30, 0)
    cfg4 = road.ij2xy(30., 4)
    obst1 = Vehicle(trajectory=np.array([[-1.,-1.,cfg1[0], cfg1[1], cfg1[2], cfg1[3], 0.,0.,0.]]))
    obst2 = Vehicle(trajectory=np.array([[-1.,-1.,cfg2[0], cfg2[1], cfg2[2], cfg2[3], 0.,0.,0.]]))
    obst3 = Vehicle(trajectory=np.array([[-1.,-1.,cfg3[0], cfg3[1], cfg3[2], cfg3[3], 0.,0.,0.]]))
    obst4 = Vehicle(trajectory=np.array([[-1.,-1.,cfg4[0], cfg4[1], cfg4[2], cfg4[3], 0.,0.,0.]]))
    verts1 = [tuple(obst1.vertex[i]) for i in range(6)]
    verts1.append(verts1[0])
    verts2 = [tuple(obst2.vertex[i]) for i in range(6)]
    verts2.append(verts2[0])
    verts3 = [tuple(obst3.vertex[i]) for i in range(6)]
    verts3.append(verts3[0])
    verts4 = [tuple(obst4.vertex[i]) for i in range(6)]
    verts4.append(verts4[0])
    codes = [Path.MOVETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.CLOSEPOLY,
        ]
    path0 = Path(verts0, codes)
    patch0 = patches.PathPatch(path0,facecolor='cyan')
    ax1.add_patch(patch0)
    path1 = Path(verts1, codes)
    patch1 = patches.PathPatch(path1,facecolor='cyan')
    ax1.add_patch(patch1)
    path2 = Path(verts2, codes)
    patch2 = patches.PathPatch(path2,facecolor='cyan')
    ax1.add_patch(patch2)
    path3 = Path(verts3, codes)
    patch3 = patches.PathPatch(path3,facecolor='cyan')
    ax1.add_patch(patch3)
    path4 = Path(verts4, codes)
    patch4 = patches.PathPatch(path4,facecolor='cyan')
    ax1.add_patch(patch4)

    #
    ax1.plot([cfg0[0], cfg1[0], cfg2[0], cfg3[0], cfg4[0]], [cfg0[1], cfg1[1], cfg2[1], cfg3[1], cfg4[1]], 'ro')
    for q1 in [cfg1, cfg2]:
        p, r = TG.calc_path(cursor, cfg0, q1)
        line = TG.spiral3_calc(p, r=r, q=cfg0)
        ax1.plot(line[:,1], line[:,2], color='magenta', linewidth=2)
    for q0 in [cfg1, cfg2]:
        for q1 in [cfg3, cfg4]:
            p, r = TG.calc_path(cursor, q0, q1)
            line = TG.spiral3_calc(p, r=r, q=q0)
            ax1.plot(line[:,1], line[:,2], color='magenta', linewidth=2)
    #
    plt.xlabel('$x (m)$', fontsize=20)
    plt.ylabel('$y (m)$', fontsize=20)
    plt.axis('equal')
    # plt.axis('off')
    # plt.savefig('img/road_grid.png', dpi=600)
    # plt.savefig('img/road_shape.png', dpi=600)
    # plt.savefig('img/road_spiral3.png', dpi=600)
    plt.show()

    cursor.close()
    conn.close()
Example #27
0
from Simulation_env import Simulation_env
import TrajectoryGeneration
import numpy as np

""" generate and run trajectories"""

# initialize test environment 
nbins = 10
num_actions = 4
action_lims = np.array([[-1,1],[-1,1],[-1,1],[-1,1]])
env = Simulation_env('bixler3')

trajectories = TrajectoryGeneration.generate_trajectories(num_actions,nbins,action_lims,env)
Example #28
0
def test_cost_fun_discrete():

    from math import pi 
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    q0 = (5., 0., 0., 0.01)
    q1 = (55., 20., pi/6, -0.01)

    p, r = TG.calc_path(cursor, q0, q1)
    print('p={0},r={1}'.format(p,r))

    sg = p[4]


    line = TG.spiral3_calc(p, r=r, q=q0)

    P0 = q0[0:3]
    P1 = TG.spiral3_calc(p, r=r, s=sg/3, q=q0)[-1, 1:4]
    P2 = TG.spiral3_calc(p, r=r, s=2*sg/3, q=q0)[-1, 1:4]
    P3 = TG.spiral3_calc(p, r=r, s=sg, q=q0)[-1, 1:4]

    ####################
    veh0 = Vehicle(trajectory=np.array([[-1.,-1.,P0[0],P0[1],P0[2],0.,0.,0.,0.]]))
    veh1 = Vehicle(trajectory=np.array([[-1.,-1.,P1[0],P1[1],P1[2],0.,0.,0.,0.]]))
    veh2 = Vehicle(trajectory=np.array([[-1.,-1.,P2[0],P2[1],P2[2],0.,0.,0.,0.]]))
    veh3 = Vehicle(trajectory=np.array([[-1.,-1.,P3[0],P3[1],P3[2],0.,0.,0.,0.]]))


    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    # ax2 = fig.add_subplot(122)

    ax1.plot(line[:,1], line[:,2], color='black', linewidth=4)
    # ax2.plot(line[:,1], line[:,2], color='black', linewidth=4)

    verts0 = [tuple(veh0.vertex[i]) for i in range(6)]
    verts0.append(verts0[0])
    verts1 = [tuple(veh1.vertex[i]) for i in range(6)]
    verts1.append(verts1[0])
    verts2 = [tuple(veh2.vertex[i]) for i in range(6)]
    verts2.append(verts2[0])
    verts3 = [tuple(veh3.vertex[i]) for i in range(6)]
    verts3.append(verts3[0])

    codes = [Path.MOVETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.CLOSEPOLY,
        ]

    path0 = Path(verts0, codes)
    path1 = Path(verts1, codes)
    path2 = Path(verts2, codes)
    path3 = Path(verts3, codes)

    patch0 = patches.PathPatch(path0,facecolor='green')
    patch1 = patches.PathPatch(path1,facecolor='green')
    patch2 = patches.PathPatch(path2,facecolor='green')
    patch3 = patches.PathPatch(path3,facecolor='green')

    ax1.add_patch(patch0)
    ax1.add_patch(patch1)
    ax1.add_patch(patch2)
    ax1.add_patch(patch3)

    plt.axis('equal')
    # plt.axis('off')
    plt.show()


    cursor.close()
    conn.close()
Example #29
0
def test_transition():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    p = (0.01, 0.0070893847415232263, 0.0056488099243383414, -0.01, 109.61234595301809)
    center_line = TG.spiral3_calc(p, s=70., q=(5.,30.,np.pi/9))
    road = Road(center_line, ref_grid_width=0.5, ref_grid_length=1.)

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    # ax1.plot(center_line[:,1], center_line[:,2], color='red', linestyle='--', linewidth=2.)
    ax1.plot(center_line[:,1], center_line[:,2], color='red', linewidth=1.)
    ax1.plot(road.lateral_lines[:,0], road.lateral_lines[:,1],color='red', linewidth=1.)
    ax1.plot(road.lateral_lines[:,-2], road.lateral_lines[:,-1],color='green', linewidth=1.)

    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='green', linewidth=1.)
        else:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='black', linewidth=0.3)
    for i in range(road.grid_num_longitudinal+1):
        ax1.plot(road.lateral_lines[:,2*i], road.lateral_lines[:,2*i+1],color='black', linewidth=0.3)
    #
    cfg0 = road.ij2xy(4, 0)
    veh = Vehicle(trajectory=np.array([[-1.,-1.,cfg0[0], cfg0[1], cfg0[2], cfg0[3], 0.,5.,0.]]))
    # verts0 = [tuple(veh.vertex[i]) for i in range(6)]
    # verts0.append(verts0[0])
    # codes = [Path.MOVETO,
    #     Path.LINETO,
    #     Path.LINETO,
    #     Path.LINETO,
    #     Path.LINETO,
    #     Path.LINETO,
    #     Path.CLOSEPOLY,
    #     ]
    # path0 = Path(verts0, codes)
    # patch0 = patches.PathPatch(path0,facecolor='cyan')
    # ax1.add_patch(patch0)
    #
    cm = np.zeros((500,500))
    hm = np.zeros((500,500))
    goal = State(road=road,r_i=15,r_j=-2,v=6.)
    goal2 = State(road=road,r_s=goal.r_s+0.3,r_l=goal.r_l+0.1,v=6.)
    goal1 = State(road=road,r_s=goal.r_s+0.7,r_l=goal.r_l+0.3,v=6.)
    ax1.text(goal1.x, goal1.y+0.4, 'g1', fontsize=15) 
    ax1.text(goal2.x, goal2.y-0.4, 'g2', fontsize=15) 
    ax1.plot(goal1.x, goal1.y, 'mo')
    ax1.plot(goal2.x, goal2.y, 'mo')
    state1 = State(time=0.,length=0.,road=road,r_i=4,r_j=0,v=5.,cost=0., heuristic_map=hm)
    state2 = State(time=0.,length=0.,road=road,r_i=5,r_j=-4,v=5.,cost=0., heuristic_map=hm)
    ax1.text(state1.x, state1.y+0.4, 's1', fontsize=15) 
    ax1.text(state2.x, state2.y-0.4, 's2', fontsize=15) 
    ax1.plot(state1.x, state1.y, 'mo')
    ax1.plot(state2.x, state2.y, 'mo')
    # ax1.plot(state.x, state.y, 'rs')
    # for s1 in [state1, state2]:
    #     for s2 in [goal1,goal2]:
    #         traj = trajectory(s1,s2,cursor)
    #         if traj is not None:
    #             ax1.plot(traj[:,2], traj[:,3], linewidth=2)
    #             ax1.plot(traj[0,2], traj[0,3], 'mo')
    #             ax1.plot(traj[-1,2], traj[-1,3], 'mo')
    traj1 = trajectory(state1,goal1,cursor)
    traj2 = trajectory(state2,goal2,cursor)
    traj3 = trajectory(state2,goal1,cursor)
    ax1.plot(traj1[:,2], traj1[:,3], linewidth=2., color='red')
    ax1.plot(traj2[:,2], traj2[:,3], linewidth=2., color='black')
    ax1.plot(traj3[:,2], traj3[:,3], 'b--', linewidth=2.)
    # node_dict = {}
    # # successors = state.successors(state_dict=node_dict, road=road, goal=goal, vehicle=veh, heuristic_map=hm, accs=[-3., -2., -1., 0., 1.], v_offset=[-1.,-0.5, 0., 0.5, 1.],times=[3.])
    # successors = state.successors(state_dict=node_dict, road=road, goal=goal, vehicle=veh, heuristic_map=hm, times = [2.5]) # accs=[ 0.], v_offset=[-1.,-0.5, 0., 0.5, 1.],times=[1.,2.,4.]
    # print("number of successors: {0}".format(len(successors)))
    # for successor in successors:
    #     # p, r = TG.calc_path(cursor, state.q, successor.q)
    #     # if p is not None and p[4]>0:
    #     #     line = TG.spiral3_calc(p, r=r, q=state.q)
    #     #     ax1.plot(successor.x, successor.y, 'mo')
    #     #     ax1.plot(line[:,1], line[:,2], linewidth=2)
    #     traj1 = trajectory(state,successor,cursor)
    #     if traj1 is not None:
    #         _, traj, _ = TG.eval_trajectory(traj1,costmap=cm,road=road)
    #         if traj is not None:
    #             ax1.plot(traj[:,2], traj[:,3], linewidth=2)
    #             ax1.plot(traj[-1,2], traj[-1,3], 'mo')
    #
    # ax1.plot([cfg0[0], cfg1[0], cfg2[0], cfg3[0], cfg4[0]], [cfg0[1], cfg1[1], cfg2[1], cfg3[1], cfg4[1]], 'ro')
    # for q1 in [cfg1, cfg2]:
    #     p, r = TG.calc_path(cursor, cfg0, q1)
    #     line = TG.spiral3_calc(p, r=r, q=cfg0)
    #     ax1.plot(line[:,1], line[:,2], color='magenta', linewidth=2)
    # for q0 in [cfg1, cfg2]:
    #     for q1 in [cfg3, cfg4]:
    #         p, r = TG.calc_path(cursor, q0, q1)
    #         line = TG.spiral3_calc(p, r=r, q=q0)
    #         ax1.plot(line[:,1], line[:,2], color='magenta', linewidth=2)
    #
    plt.xlabel('$x (m)$', fontsize=20)
    plt.ylabel('$y (m)$', fontsize=20)
    plt.axis('equal')
    # plt.axis('off')
    # plt.savefig('img/road_grid.png', dpi=600)
    # plt.savefig('img/road_shape.png', dpi=600)
    # plt.savefig('img/road_spiral3.png', dpi=600)
    plt.show()

    cursor.close()
    conn.close()
Example #30
0
def scenario_4_sim():
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    cost_maps = np.zeros((150,500,500))
    with open('scenario_4/cost_maps.pickle', 'rb') as f1:
        cost_maps = pickle.load(f1)

    heuristic_maps = np.zeros((150,500,500))
    with open('scenario_4/heuristic_maps.pickle', 'rb') as f2:
        heuristic_maps = pickle.load(f2)

    fig = plt.figure()
    ax = fig.add_subplot(111)

    p = (0.01, 0.0070893847415232263, 0.0056488099243383414, -0.01, 109.61234595301809)
    center_line = TG.spiral3_calc(p, s=100.,q=(3.,25.,0.))
    road = Road(center_line, ref_grid_width=0.5, ref_grid_length=1.)

    # ax.plot(center_line[:,1], center_line[:,2], color='red', linewidth=1.)
    ax.plot(road.lateral_lines[:,0], road.lateral_lines[:,1],color='green', linewidth=1.)
    ax.plot(road.lateral_lines[:,-2], road.lateral_lines[:,-1],color='green', linewidth=1.)
    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='green', linewidth=1.)

    goal = State(road=road, r_s=90., r_l=0., v=10.,static=False)
    start = State(time=0., length=0., road=road, r_s=5., r_l=0., v=10.,cost=0.,heuristic_map=heuristic_maps, static=False)
    veh = Vehicle(trajectory=np.array([[-1.,-1.,start.x, start.y, start.theta, start.k, 0.,0.,0.]]))


    # # weights: weights for (k, dk, v, a, a_c, l, env, j, t, s)
    weights = np.array([5., 10., -0.1, 10., 0.1, 1., 50., 5, 30., -2.])

    starttime = datetime.datetime.now()
    res, state_dict, traj_dict = Astar(start, goal, road, cost_maps, veh, heuristic_maps, cursor, static=False, weights=weights)
    endtime = datetime.datetime.now()

    print((endtime - starttime).total_seconds()*1000) # 4.8s
    print(res)
    print(len(state_dict)) #96
    print(len(traj_dict))

    # for _ , traj in traj_dict.items():
        # ax.plot(traj[:,2], traj[:,3], traj[:,0], color='navy', linewidth=0.3)
        # ax.plot(traj[:,2], traj[:,3], color='blue', linewidth=1.)
    # for _, state in state_dict.items():
    #     if state != start and state != goal:
    #         ax.plot(state.x, state.y, 'go')
            # ax.text(state.x, state.y,'{0:.2f}'.format(state.cost))
    state = goal
    rows = 0
    while state.parent is not None:
        traj = traj_dict[(state.parent, state)]
        ax.plot(traj[:,2], traj[:,3], color='magenta', linewidth=3.)
        rows += traj.shape[0]
        ax.plot(state.x, state.y, 'go')
        ax.plot(state.parent.x, state.parent.y, 'go')
        state = state.parent
        # ax.plot(traj[:,2], traj[:,3], traj[:,0], color='teal', linewidth=1.)
        
        # ax.plot(traj[:,0], traj[:,7], color='black', linewidth=0.5)
    # print(rows)
    final_traj=np.zeros((rows,9))
    state = goal
    # row = 0
    while state.parent is not None:
        traj = traj_dict[(state.parent, state)]
        final_traj[(rows-traj.shape[0]):rows,:] = traj
        rows -= traj.shape[0]
        # row += traj.shape[0]
        state = state.parent
    with open('scenario_4/final_traj.pickle','wb') as f3:  
        pickle.dump(final_traj, f3)

    #
    #################
    s1 = State(time=0.,length=0.,road=road,r_s=25.,r_l=road.lane_width, v=15.)
    g1 = State(road=road,r_s=95.,r_l=road.lane_width,v=15.)
    traj1 = trajectory_forward(s1,g1,cursor)
    # print(traj1[-1,:])
    # ax.plot(traj1[:,2], traj1[:,3], color='navy', linewidth=2.)

    s2 = State(time=0.,length=0.,road=road,r_s=20.,r_l=0.,v=6.)
    g2 = State(road=road,r_s=95.,r_l=0.,v=6.)
    traj2 = trajectory_forward(s2,g2,cursor)
    # print(traj2[-1,:])
    # ax.plot(traj2[:,2], traj2[:,3], color='navy', linewidth=2.)

    cfg3 = road.sl2xy(30.,-road.lane_width)
    obst_s = Vehicle(trajectory=np.array([[-1.,-1.,cfg3[0], cfg3[1], cfg3[2], cfg3[3], 0.,0.,0.]]))

    codes6 = [Path.MOVETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.CLOSEPOLY,
        ]

    verts_s = [tuple(obst_s.vertex[i]) for i in range(6)]
    verts_s.append(verts_s[0])
    ax.add_patch(patches.PathPatch(Path(verts_s, codes6), facecolor='cyan'))

    for i in range(31):
        state1 = trajectory_interp(traj1, i*goal.time/30)
        state2 = trajectory_interp(traj2, i*goal.time/30)
        state3 = trajectory_interp(final_traj, i*goal.time/30)
        if state1 is not None:
            obst_d1 = Vehicle(trajectory=np.array([[-1.,-1.,state1[2], state1[3], state1[4], 0., 0.,0.,0.]]))
            verts_d1 = [tuple(obst_d1.vertex[i]) for i in range(6)]
            verts_d1.append(verts_d1[0])
            ax.add_patch(patches.PathPatch(Path(verts_d1, codes6), facecolor='cyan', alpha=0.1+0.03*i))
        if state2 is not None:
            obst_d2 = Vehicle(trajectory=np.array([[-1.,-1.,state2[2], state2[3], state2[4], 0., 0.,0.,0.]]))
            verts_d2 = [tuple(obst_d2.vertex[i]) for i in range(6)]
            verts_d2.append(verts_d2[0])
            ax.add_patch(patches.PathPatch(Path(verts_d2, codes6), facecolor='cyan', alpha=0.1+0.03*i))
        if state3 is not None:
            obst_d3 = Vehicle(trajectory=np.array([[-1.,-1.,state3[2], state3[3], state3[4], 0., 0.,0.,0.]]))
            verts_d3 = [tuple(obst_d3.vertex[i]) for i in range(6)]
            verts_d3.append(verts_d3[0])
            ax.add_patch(patches.PathPatch(Path(verts_d3, codes6), facecolor='blue', alpha=0.1+0.03*i))




    plt.axis('equal')
    # plt.axis('off')
    # plt.savefig('scenario_4/obstacles2.png', dpi=600)
    plt.show()

    cursor.close()
    conn.close()
Example #31
0
    max_a = 10
    dt = 1 / 60.0
    drive_base_width = .4
    lookahead_at_max_vel = .3
    minimum_lookahead = .05

    ws = WaypointSequence()
    ws.add_waypoint(Pose(0, 0, math.pi / 2))
    # ws.add_waypoint(Pose(2, 2, 3 * math.pi/2))
    ws.add_waypoint(Pose(-1, 1, math.pi))

    config = TrajectoryConfig(max_v, max_a, dt)

    trajectory = PathGeneration.generate_from_waypoints(ws, config, 0, 0)

    left_right_traj = TrajectoryGeneration.make_left_right_trajectories(
        trajectory, drive_base_width)
    csv = CsvWriter("C:/Users/Stanl/PycharmProjects/PurePursuit/traj.csv")
    time_list = []
    left_list = []
    right_list = []
    for i in range(len(left_right_traj[0])):
        left_list.append(left_right_traj[0][i].vel)
        right_list.append(left_right_traj[1][i].vel)
        time_list.append(left_right_traj[0][1].dt * i)

    csv.write_to_csv(time_list, left_list, right_list)

    robot = DriveBase(Pose(0, 0, 0), drive_base_width, max_v)
    pp = PurePursuit(minimum_lookahead, lookahead_at_max_vel,
                     left_right_traj[2], drive_base_width, max_v)
    controller = CombinedDriveController(pp, left_right_traj, max_v)
Example #32
0
def senarios_1():
    # database connection
    conn = sqlite3.connect('InitialGuessTable.db')
    cursor = conn.cursor()

    # plot
    fig = plt.figure()
    # ax1 = fig.add_subplot(111, projection='3d')
    ax1 = fig.add_subplot(111)
    # ax2 = fig.add_subplot(212)

    # road center line points
    p = (0.01, 0.0070893847415232263, 0.0056488099243383414, -0.01, 109.61234595301809)
    center_line = TG.spiral3_calc(p, s=100.,q=(3.,25.,0.))
    # p = (0.,0.,0.,0.,90.) # (p0~p3, sg)
    # center_line = TG.spiral3_calc(p, q=(5.,50.,0.))
    # np.savetxt('scenario_1/road_center_line.txt', center_line, delimiter='\t')
    # print(center_line)

    # road
    road = Road(center_line)

    ax1.plot(center_line[:,1], center_line[:,2], color='maroon', linestyle='--', linewidth=1.)

    ax1.plot(road.lateral_lines[:,0], road.lateral_lines[:,1],color='green', linewidth=1.)
    ax1.plot(road.lateral_lines[:,-2], road.lateral_lines[:,-1],color='green', linewidth=1.)
    for i in range(road.grid_num_lateral+1):
        if (i % road.grid_num_per_lane) == 0:
            ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='green', linewidth=1.)
        # else:
        #     ax1.plot(road.longitudinal_lines[:,2*i], road.longitudinal_lines[:,2*i+1], color='black', linewidth=0.3)
    # for i in range(road.grid_num_longitudinal+1):
    #     ax1.plot(road.lateral_lines[:,2*i], road.lateral_lines[:,2*i+1],color='black', linewidth=0.3)

    # vehicle
    cfg0 = road.sl2xy(5.,0.)
    cfg5 = road.sl2xy(90.,0.)
    veh = Vehicle(trajectory=np.array([[-1.,-1.,cfg0[0], cfg0[1], cfg0[2], cfg0[3], 0.,5.,0.]]))
    veh5 = Vehicle(trajectory=np.array([[-1.,-1.,cfg5[0], cfg5[1], cfg5[2], cfg5[3], 0.,5.,0.]]))

    # ax1.plot(cfg0[0], cfg0[1], 'ko')
    # ax1.text(cfg0[0], cfg0[1]+0.4, 'Start')
    # # ax1.plot(cfg5[0], cfg5[1], 'ko')
    # ax1.text(cfg5[0], cfg5[1]+0.4, 'Goal')

    codes6 = [Path.MOVETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.LINETO,
        Path.CLOSEPOLY,
        ]
    # verts0 = [tuple(veh.vertex[i]) for i in range(6)]
    # verts0.append(verts0[0])
    # ax1.add_patch(patches.PathPatch(Path(verts0, codes6), facecolor='green', alpha=0.5))

    # verts5 = [tuple(veh5.vertex[i]) for i in range(6)]
    # verts5.append(verts5[0])
    # ax1.add_patch(patches.PathPatch(Path(verts5, codes6), facecolor='red', alpha=0.5))


    # workspace
    ws = Workspace(vehicle=veh, road=road)
    road_lane_bitmap0 = ws.lane_grids[0]
    road_lane_bitmap1 = ws.lane_grids[1]
    road_lane_bitmap2 = ws.lane_grids[2]
    # write the lane bitmaps into files
    # np.savetxt('road_lane_bitmap0.txt', road_lane_bitmap0, fmt='%i',delimiter=' ')
    # np.savetxt('road_lane_bitmap1.txt', road_lane_bitmap1, fmt='%i',delimiter=' ')
    # np.savetxt('road_lane_bitmap2.txt', road_lane_bitmap2, fmt='%i',delimiter=' ')
    # road bitmap
    road_bitmap = road_lane_bitmap0 + road_lane_bitmap1 + road_lane_bitmap2
    road_bitmap = np.where(road_bitmap>1.e-6, 1., 0.)
    # np.savetxt('road_bitmap.txt', road_bitmap, fmt='%i', delimiter=' ')
    # base bitmap
    base = 1. - road_bitmap
    # base = np.where(base>1.e-6, np.inf, 0)
    # np.savetxt('base_bitmap.txt', base, fmt='%i', delimiter=' ')

    # static obstacles
    cfg1 = road.sl2xy(30., 0.)
    cfg2 = road.sl2xy(30., -road.lane_width)
    cfg3 = road.sl2xy(65.,0.)
    cfg4 = road.sl2xy(65., road.lane_width)
    obst1 = Vehicle(trajectory=np.array([[-1.,-1.,cfg1[0], cfg1[1], cfg1[2], cfg1[3], 0.,0.,0.]]))
    obst2 = Vehicle(trajectory=np.array([[-1.,-1.,cfg2[0], cfg2[1], cfg2[2], cfg2[3], 0.,0.,0.]]))
    obst3 = Vehicle(trajectory=np.array([[-1.,-1.,cfg3[0], cfg3[1], cfg3[2], cfg3[3], 0.,0.,0.]]))
    obst4 = Vehicle(trajectory=np.array([[-1.,-1.,cfg4[0], cfg4[1], cfg4[2], cfg4[3], 0.,0.,0.]]))

    verts1 = [tuple(obst1.vertex[i]) for i in range(6)]
    verts1.append(verts1[0])
    ax1.add_patch(patches.PathPatch(Path(verts1, codes6), facecolor='cyan'))
    verts2 = [tuple(obst2.vertex[i]) for i in range(6)]
    verts2.append(verts2[0])
    ax1.add_patch(patches.PathPatch(Path(verts2, codes6), facecolor='cyan'))
    verts3 = [tuple(obst3.vertex[i]) for i in range(6)]
    verts3.append(verts3[0])
    ax1.add_patch(patches.PathPatch(Path(verts3, codes6), facecolor='cyan'))
    verts4 = [tuple(obst4.vertex[i]) for i in range(6)]
    verts4.append(verts4[0])
    ax1.add_patch(patches.PathPatch(Path(verts4, codes6), facecolor='cyan'))

    base += ws.grids_occupied_by_polygon(obst1.vertex)
    base += ws.grids_occupied_by_polygon(obst2.vertex)
    base += ws.grids_occupied_by_polygon(obst3.vertex)
    base += ws.grids_occupied_by_polygon(obst4.vertex)
    base = np.where(base>1.e-6, 1.,0.)
    # np.savetxt('scenario_1/static_bitmap.txt', base, fmt='%i', delimiter=' ')
    
    # collision map
    collision_map = cv2.filter2D(base, -1, ws.collision_filter)
    collision_map = np.where(collision_map>1.e-6, 1., 0.)
    # np.savetxt('scenario_1/collision_bitmap.txt', collision_map, fmt='%i', delimiter=' ')

    # cost map
    cost_map = cv2.filter2D(collision_map, -1, ws.cost_filter)
    cost_map += collision_map
    cost_map = np.where(cost_map>1., np.inf, cost_map)
    cost_map = np.where(cost_map<1.e-8, 0., cost_map)
    # costmap_save = np.where( cost_map >1., -1., cost_map)
    # np.savetxt('scenario_1/cost_map.txt', costmap_save, delimiter='\t')

    # plot
    # costmap_plot = np.where( cost_map >1., 1., cost_map)
    # ax1.imshow(costmap_plot, cmap=plt.cm.Reds, origin="lower",extent=(0.,ws.resolution*ws.row,0.,ws.resolution*ws.column))
    
    
    # heuristic map
    goal_state = State(road=road, r_s=90., r_l=0., v=10.)
    # ax1.scatter(goal_state.x, goal_state.y, c='r')
    ax1.plot(goal_state.x, goal_state.y, 'rs')

    heuristic_map = heuristic_map_constructor(goal_state, cost_map)
    # hm_save = np.where(heuristic_map > np.finfo('d').max, -1., heuristic_map)
    # np.savetxt('scenario_1/heuristic_map.txt', hm_save, delimiter='\t')

    start_state = State(time=0., length=0., road=road, r_s=5., r_l=0., v=10.,cost=0., heuristic_map=heuristic_map)
    # ax1.scatter(start_state.x, start_state.y, c='r')
    ax1.plot(start_state.x, start_state.y, 'rs')
    # ax1.imshow(heuristic_map, cmap=plt.cm.Reds, origin="lower",extent=(0.,ws.resolution*ws.row,0.,ws.resolution*ws.column))

    # # weights: weights for (k, dk, v, a, a_c, l, env, j, t, s)
    weights = np.array([5., 10., -0.1, 10., 0.1, 0.1, 50., 5, 40., -4.])

    starttime = datetime.datetime.now()
    res, state_dict, traj_dict = Astar(start_state, goal_state, road, cost_map, veh, heuristic_map, cursor, weights=weights)
    endtime = datetime.datetime.now()

    print((endtime - starttime).total_seconds()*1000) # 2.6s
    print(res)
    print(len(state_dict)) #66
    print(len(traj_dict))
    # print(goal_state.time, goal_state.length, goal_state.cost, start_state.heuristic, goal_state.heuristic)
    # # True
    # 168
    # 175
    # 8.78814826688 76.409797813 2701.06684421 1559.33663366 0.0

    # for _ , traj in traj_dict.items():
        # ax1.plot(traj[:,2], traj[:,3], traj[:,0], color='navy', linewidth=0.3)
        # ax1.plot(traj[:,2], traj[:,3], color='navy', linewidth=1.)
    # for _, state in state_dict.items():
    #     if state != start_state and state != goal_state:
    #         ax1.plot(state.x, state.y, 'go')
            # ax1.text(state.x, state.y,'{0:.2f}'.format(state.cost))
    state = goal_state
    rows = 0 
    while state.parent is not None:
        traj = traj_dict[(state.parent, state)]
        ax1.plot(traj[:,2], traj[:,3], color='magenta', linewidth=3.)
        rows += traj.shape[0]
        ax1.plot(state.x, state.y, 'go')
        ax1.plot(state.parent.x, state.parent.y, 'go')
        state = state.parent

    final_traj=np.zeros((rows,9))
    state = goal_state
    while state.parent is not None:
        traj = traj_dict[(state.parent, state)]
        final_traj[(rows-traj.shape[0]):rows,:] = traj
        rows -= traj.shape[0]
        state = state.parent

    # with open('scenario_1/final_traj.pickle','wb') as f3:  
    #     pickle.dump(final_traj, f3)

    for i in range(31):
        state1 = trajectory_interp(final_traj, i*goal_state.time/30)
        if state1 is not None:
            obst_d1 = Vehicle(trajectory=np.array([[-1.,-1.,state1[2], state1[3], state1[4], 0., 0.,0.,0.]]))
            verts_d1 = [tuple(obst_d1.vertex[i]) for i in range(6)]
            verts_d1.append(verts_d1[0])
            ax1.add_patch(patches.PathPatch(Path(verts_d1, codes6), facecolor='blue', alpha=0.1+0.03*i))


    # close database connection
    cursor.close()
    conn.close()

    #
    # plt.legend()
    plt.axis('equal')
    # plt.savefig('scenario_1/astar_3.png', dpi=600)
    plt.show()
Example #33
0
def path_forward(q0, q1, cursor):
    p, r = TG.calc_path(cursor, q0, q1)
    if r is not None and p[4] > 0.:
        path = TG.spiral3_calc(p, r=r, q=q0)
        return path, p, r
    return None, None, None