Example #1
0
def bpNet(dataSet, classLabels):
    SampIn = mat(dataSet).T
    expected = mat(classLabels)
    m, n = shape(dataSet)
    eb = 0.01
    eta = 0.05
    mc = 0.3
    maxiter = 2000
    errlist = []

    nSampleNum = m
    nSampleDim = n - 1
    nHidden = 4
    nOut = 1

    hi_w = 2.0 * (random.rand(nHidden, nSampleDim) - 0.5)
    hi_b = 2.0 * (random.rand(nHidden, 1) - 0.5)
    hi_wb = mat(Untils.mergMatrix(mat(hi_w), mat(hi_b)))

    out_w = 2.0 * (random.rand(nOut, nHidden) - 0.5)
    out_b = 2.0 * (random.rand(nOut, 1) - 0.5)
    out_wb = mat(Untils.mergMatrix(mat(out_w), mat(out_b)))

    dout_wbOld = 0.0
    dhi_wbOld = 0.0

    for i in xrange(maxiter):
        hi_input = hi_wb * SampIn
        hi_output = logistic(hi_input)
        hi2out = Untils.mergeMatrix(hi_output.T, ones((nSampleNum, 1))).T

        out_input = out_wb * hi2out
        out_output = logistic(out_input)

        err = expected - out_output
        sse = errorfunc(err)
        errlist.append(sse)

        if sse <= eb:
            print "iteration:", i + 1
            break
        DELTA = multiply(err, dlogit(out_input, out_output))
        wDelta = out_wb[:, :-1].T * DELTA

        delta = multiply(wDelta, dlogit(hi_input, hi_output))
        dout_wb = DELTA * hi2out.T

        dhi_wb = delta * SampIn.T

        if i == 0:
            out_wb = out_wb + eta * dout_wb
            hi_wb = hi_wb + eta * dhi_wb
        else:
            out_wb = out_wb + (1.0 - mc) * eta * dout_wb + mc * dout_wbOld
            hi_wb = hi_wb + (1.0 - mc) * eta * dhi_wb + mc * dhi_wbOld
            dout_wbOld = dout_wb
            dhi_wbOld = dhi_wb
        return errlist, out_wb, hi_wb
Example #2
0
def bpNet(dataSet, classLabels):
    # 数据集矩阵化
    SampIn = mat(dataSet).T
    expected = mat(classLabels)
    m, n = shape(dataSet)
    # 网络参数
    eb = 0.01  # 误差容限
    eta = 0.05  # 学习率
    mc = 0.3  # 动量因子
    maxiter = 2000  # 最大迭代次数
    errlist = []  # 误差列表

    # 构造网络
    # 初始化网络
    nSampNum = m
    # 样本数量
    nSampDim = n - 1
    # 样本维度
    nHidden = 4
    # 隐含层神经元
    nOut = 1
    # 输出层

    # 隐含层参数
    hi_w = 2.0 * (random.rand(nHidden, nSampDim) - 0.5)
    hi_b = 2.0 * (random.rand(nHidden, 1) - 0.5)
    hi_wb = mat(Untils.mergMatrix(mat(hi_w), mat(hi_b)))

    # 输出层参数
    out_w = 2.0 * (random.rand(nOut, nHidden) - 0.5)
    out_b = 2.0 * (random.rand(nOut, 1) - 0.5)
    out_wb = mat(Untils.mergMatrix(mat(out_w), mat(out_b)))
    # 默认旧权值
    dout_wbOld = 0.0
    dhi_wbOld = 0.0

    for i in xrange(maxiter):
        #1. 工作信号正向传播

        #1.1 输入层到隐含层
        hi_input = hi_wb * SampIn  #  hi_wb 4,n SampIn n,m
        hi_output = logistic(hi_input)
        print "hi_output.T.shape", hi_output.T.shape
        hi2out = Untils.mergMatrix(hi_output.T, ones((nSampNum, 1))).T

        #1.2 隐含层到输出层
        out_input = out_wb * hi2out
        out_output = logistic(out_input)

        #2. 误差计算
        err = expected - out_output
        sse = errorfunc(err)
        errlist.append(sse)
        #2.1 判断是否收敛
        if sse <= eb:
            print "iteration:", i + 1
            break

        #3.误差信号反向传播
        #3.1 DELTA为输出层到隐含层梯度
        DELTA = multiply(err, dlogit(out_input, out_output))
        wDelta = out_wb[:, :-1].T * DELTA
        print "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"
        print "err.shape", err.shape
        print "dlogit(out_input,out_output).shape", dlogit(
            out_input, out_output).shape
        print "out_wb[:,:-1].T.shape", out_wb[:, :-1].T.shape

        #3.2 delta为隐含层到输入层梯度
        delta = multiply(wDelta, dlogit(hi_input, hi_output))
        dout_wb = DELTA * hi2out.T

        print "DELTA.shape", DELTA.shape
        print "hi2out.T.shape", hi2out.T.shape
        #3.3 输入层的权值更新
        dhi_wb = delta * SampIn.T

        #3.4 更新输出层和隐含层权值
        if i == 0:
            out_wb = out_wb + eta * dout_wb
            hi_wb = hi_wb + eta * dhi_wb
        else:
            out_wb = out_wb + (1.0 - mc) * eta * dout_wb + mc * dout_wbOld
            hi_wb = hi_wb + (1.0 - mc) * eta * dhi_wb + mc * dhi_wbOld
        dout_wbOld = dout_wb
        dhi_wbOld = dhi_wb
    return errlist, out_wb, hi_wb
mc = 0.8                    # 动量因子 
maxiter = 1000              # 最大迭代次数 

# 构造网络

# 初始化网络
nSampNum = m;  # 样本数量
nSampDim = 2;  # 样本维度
nHidden = 3;   # 隐含层神经元 
nOut = 1;      # 输出层

# 隐含层参数
# net_Hidden * 3 一行代表一个隐含层节点
w = 2*(random.rand(nHidden,nSampDim)-1/2)  
b = 2*(random.rand(nHidden,1)-1/2) 
wex = mat(Untils.mergMatrix(mat(w),mat(b)))

# 输出层参数
W = 2*(random.rand(nOut,nHidden)-1/2) 
B = 2*(random.rand(nOut,1)-1/2) 
WEX = mat(Untils.mergMatrix(mat(W),mat(B)))

dWEXOld = [] ; dwexOld = [] # 初始化权值中间变量
# 训练
iteration = 0;  
# 初始化误差变量
errRec = [];

for i in range(maxiter):   
    # 工作信号正向传播
    hp = wex*SampIn
def bpNet(dataSet,classLabels):
    # 数据集矩阵化
    SampIn = mat(dataSet).T
    expected = mat(classLabels)
    [m,n] = shape(dataSet) 
    # 网络参数
    eb = 0.01                   # 误差容限 
    eta = 0.05                   # 学习率 
    mc = 0.2                    # 动量因子 
    maxiter = 2000              # 最大迭代次数 
    errRec = []                 # 误差
    # 构造网络
    
    # 初始化网络
    nSampNum = m;  # 样本数量
    nSampDim = n-1;  # 样本维度
    nHidden = 4;   # 隐含层神经元 
    nOut = 1;      # 输出层

    # 输入层参数
    
    # 隐含层参数
    # net_Hidden * 3 一行代表一个隐含层节点
    w = 2.0*(random.rand(nHidden,nSampDim)-1.0/2.0)  
    b = 2.0*(random.rand(nHidden,1)-1.0/2.0) 
    wex = mat(Untils.mergMatrix(mat(w),mat(b)))
    
    # 输出层参数
    W = 2.0*(random.rand(nOut,nHidden)-1.0/2.0) 
    B = 2.0*(random.rand(nOut,1)-1.0/2.0) 
    WEX = mat(Untils.mergMatrix(mat(W),mat(B)))
    
    dWEXOld = 0.0 ; dwexOld = 0.0 
    # 训练
    iteration = 0.0;  
    for i in range(maxiter):   
        # 1. 工作信号正向传播
        hp = wex*SampIn
        tau = logistic(hp)
        tauex  = Untils.mergMatrix(tau.T, ones((nSampNum,1))).T
    
        HM = WEX*tauex
        out = logistic(HM)    
        err = expected - out 
        sse = sumsqr(err) 
        errRec.append(sse); 
        # 判断是否收敛
        iteration = iteration + 1    
        if sse <= eb:
            print "iteration:",i    
            break;
         
        # 2.误差信号反向传播
        # DELTA和delta为局部梯度  
        DELTA = multiply(err,dlogit(HM,out))
        wDelta = W.T*DELTA
        delta = multiply(wDelta,dlogit(hp,tau))
        dWEX = DELTA*tauex.T 
        dwex = delta*SampIn.T        
        
        # 3.更新权值
        if i == 0:  
            WEX = WEX + eta * dWEX
            wex = wex + eta * dwex
        else :    
            WEX = WEX + (1.0 - mc)*eta*dWEX + mc * dWEXOld
            wex = wex + (1.0 - mc)*eta*dwex + mc * dwexOld
     
        dWEXOld = dWEX
        dwexOld = dwex 
        W  = WEX[:,0:nHidden]
    return errRec,WEX,wex 
Example #5
0
mc = 0.8                    # 动量因子 
maxiter = 1000              # 最大迭代次数 

# 构造网络

# 初始化网络
nSampNum = m;  # 样本数量
nSampDim = 2;  # 样本维度
nHidden = 3;   # 隐含层神经元 
nOut = 1;      # 输出层

# 隐含层参数
# net_Hidden * 3 一行代表一个隐含层节点
w = 2*(random.rand(nHidden,nSampDim)-1/2)  
b = 2*(random.rand(nHidden,1)-1/2) 
wex = mat(Untils.mergMatrix(mat(w),mat(b)))

# 输出层参数
W = 2*(random.rand(nOut,nHidden)-1/2) 
B = 2*(random.rand(nOut,1)-1/2) 
WEX = mat(Untils.mergMatrix(mat(W),mat(B)))

dWEXOld = [] ; dwexOld = [] # 初始化权值中间变量
# 训练
iteration = 0;  
# 初始化误差变量
errRec = [];

for i in range(maxiter):   
    # 工作信号正向传播
    hp = wex*SampIn