def parse_args(parser: argparse, config: Config): """Parse the programme arguments :param config: :param parser: :return: arguments """ location_help = r"""location specifying the start point to scan to recursively hash files. May also be a single file. """ report_location_help = r"""location specifying the csv report file in which to write results. """ parser.add_argument('scan_location', help=location_help) parser.add_argument('-report', '--report', default=config.report, required=False, help=report_location_help) args = parser.parse_args() logging.debug(str(args)) return args
def add_parser_option(parser: argparse, short_name: str = '', full_name: str = '', **kwargs): """ Add a new option to the Parser. This function allows us to add a new option to the argument parser. This allows for every module with an entry point to set up its own set of arguments for multi-module startup. Args: parser (argparse): The parser we are adding the new option to. short_name (str): The short name of the command line flag. e.g. '-f'. full_name (str): The fully descriptive command line flag e.g. '--foo'. **kwargs: The optional parameters that will be added to the parser. see cref: https://github.com/python/cpython/blob/3.7/Lib/argparse.py. """ if short_name and full_name: parser.add_argument(short_name, full_name, **kwargs) else: parser.add_argument(full_name, **kwargs)
def aws_parser_arguments(aws_parser: argparse) -> argparse: aws_parser.add_argument("--access_key", type=str, required=False, help="Access key of the AWS account") aws_parser.add_argument("--secret_key", type=str, required=False, help="Secret key of the AWS account") aws_parser.add_argument("--account_id", type=str, required=False, help="Account ID of the AWS account") aws_parser.add_argument("--region", type=str, required=False, help="Region of the AWS account") return aws_parser
def add_parser(self, parser: argparse): # pylint: disable=protected-access parser.add_argument('archive_file', type=str, help='path to an archived trained model') parser.add_argument( 'input_file', type=str, help='path to the file containing the evaluation data') parser.add_argument('--output-file', type=str, help='path to output file') parser.add_argument( '--weights-file', type=str, help='a path that overrides which weights file to use') cuda_device = parser.add_mutually_exclusive_group(required=False) cuda_device.add_argument('--cuda-device', type=int, default=-1, help='id of GPU to use (if any)') parser.add_argument( '-t', '--thresholds', type=str, default="0", help= 'A comma (,) or underscore (_) separated list of temperature thresholds to consider' ) parser.add_argument( '-o', '--overrides', type=str, default="", help= 'a JSON structure used to override the experiment configuration') parser.add_argument( '--batch-weight-key', type=str, default="", help= 'If non-empty, name of metric used to weight the loss on a per-batch basis.' ) parser.add_argument( '--extend-vocab', action='store_true', default=False, help= 'if specified, we will use the instances in your new dataset to ' 'extend your vocabulary. If pretrained-file was used to initialize ' 'embedding layers, you may also need to pass --embedding-sources-mapping.' ) parser.add_argument( '--embedding-sources-mapping', type=str, default="", help= 'a JSON dict defining mapping from embedding module path to embedding' 'pretrained-file used during training. If not passed, and embedding needs to be ' 'extended, we will try to use the original file paths used during training. If ' 'they are not available we will use random vectors for embedding extension.' ) parser.add_argument('--include-package', type=str, action='append', default=[], help='additional packages to include') parser.set_defaults(func=evaluate_from_args)