Example #1
0
    def __init__(self, geometry, name=None):
        """        
        *Parameters*:
        
            * *geometry*: population geometry as tuple. It must correspond to the image size and be fixed through the whole simulation.
            
                * If the geometry is 2D, it corresponds to the (height, width) of the image. Only the luminance of the pixels will be represented (grayscale image).
            
                * If the geometry is 3D, the third dimension can be either 1 (grayscale) or 3 (color).
                
                If the third dimension is 3, each will correspond to the RGB values of the pixels.
                
                .. warning::
                
                    Due to the indexing system of Numpy, a 640*480 image should be fed into a (480, 640) or (480, 640, 3) population.

            * *name*: unique name of the population (optional).
        
        """   
        # Check geometry
        if isinstance(geometry, int) or len(geometry)==1:
            Global._error('The geometry of an ImagePopulation should be 2D (grayscale) or 3D (color).')
            exit(0)
        if len(geometry)==3 and (geometry[2]!=3 and geometry[2]!=1):
            Global._error('The third dimension of an ImagePopulation should be either 1 (grayscale) or 3 (color).') 
            exit(0)            
        if len(geometry)==3 and geometry[2]==1:
            geometry = (geometry[0], geometry[1])
            
        # Create the population     
        Population.__init__(self, geometry = geometry, name=name, neuron = Neuron(parameters="r = 0.0") )
Example #2
0
    def __init__(self, spike_times, name=None):

        if not isinstance(spike_times, list):
            Global._error('In a SpikeSourceArray, spike_times must be a Python list.')
            

        if isinstance(spike_times[0], list): # several neurons
            nb_neurons = len(spike_times)
        else: # a single Neuron
            nb_neurons = 1
            spike_times = [ spike_times ]

        # Create a fake neuron just to be sure the description has the correct parameters
        neuron = Neuron(
            parameters="""
                spike_times = 0.0 : int
            """,
            equations="",
            spike=" t == spike_times",
            reset="",
            name="Spike source",
            description="Spikes source array."
        )

        Population.__init__(self, geometry=nb_neurons, neuron=neuron, name=name)

        self.init['spike_times'] = spike_times
Example #3
0
    def __init__(self, geometry, name=None, copied=False):
        """            
        :param geometry: population geometry as tuple. It must correspond to the image size and be fixed through the whole simulation.
        :param name: unique name of the population (optional).     
        """
        # Check geometry
        if isinstance(geometry, int) or len(geometry) == 1:
            Global._error(
                'The geometry of an ImagePopulation should be 2D (grayscale) or 3D (color).'
            )

        if len(geometry) == 3 and (geometry[2] != 3 and geometry[2] != 1):
            Global._error(
                'The third dimension of an ImagePopulation should be either 1 (grayscale) or 3 (color).'
            )

        if len(geometry) == 3 and geometry[2] == 1:
            geometry = (int(geometry[0]), int(geometry[1]))

        # Create the population
        Population.__init__(self,
                            geometry=geometry,
                            name=name,
                            neuron=Neuron(parameters="r = 0.0"),
                            copied=copied)
Example #4
0
    def __init__(self, spike_times, name=None):

        if not isinstance(spike_times, list):
            Global._error('in SpikeSourceArray, spike_times must be a Python list.')
            exit(0)

        if isinstance(spike_times[0], list): # several neurons
            nb_neurons = len(spike_times)
        else: # a single Neuron
            nb_neurons = 1
            spike_times = [ spike_times ]

        # Create a fake neuron just to be sure the description has the correct parameters
        neuron = Neuron(
            parameters="""
                spike_times = 0.0
            """,
            equations="",
            spike=" t == spike_times",
            reset="",
            name="Spike source",
            description="Spikes source array."
        )

        Population.__init__(self, geometry=nb_neurons, neuron=neuron, name=name)

        # Do some sorting to save C++ complexity
        times = []
        for neur_times in spike_times:
            times.append(sorted(list(set(neur_times)))) # suppress doublons and sort

        self.init['spike_times'] = times
Example #5
0
    def __init__(self, population, name=None, scaling=1.0, refractory=None, copied=False):
        """
        :param population: the Population to convert. Its neuron type must be spiking.
        :param name: the (optional) name of the hybrid population.
        :param scaling: the scaling of the firing rate. Defines what a rate ``r`` of 1.0 means in Hz (default: 1.0).
        :param refractory: a refractory period in ms to ensure the ISI is not too high (default: None)
        """
        self.population = population
        self.refractory_init = refractory

        if not self.population.neuron_type.description['type'] == 'rate':
            Global._error('the population ' + self.population.name + ' must contain rate-coded neurons.')
            

        # Create the description, but it will not be used for generation
        Population.__init__(
            self, 
            geometry = self.population.geometry, 
            name=name, 
            neuron = Neuron(
                parameters="""
                    scaling = %(scaling)s : population
                """ % {'scaling': scaling} ,
                equations="""
                    p = Uniform(0.0, 1.0)
                    rates = p
                """,
                spike="rates>p",
                refractory=refractory
            ) ,
            copied=self.copied
        )

        self._specific = True
Example #6
0
    def __init__(self, population, name=None, scaling=1.0, refractory=None):
        """
        *Parameters*:

        * **population**: the Population to convert. Its neuron type must be spiking.
        * **name**: the (optional) name of the hybrid population.
        * **scaling**: the scaling of the firing rate. Defines what a rate ``r`` of 1.0 means in Hz (default: 1.0).
        * **refractory**: a refractory period in ms to ensure the ISI is not too high (default: None)
        """
        self.population = population

        if not self.population.neuron_type.description['type'] == 'rate':
            Global._error('the population ' + self.population.name + ' must contain rate-coded neurons.')
            

        # Create the description, but it will not be used for generation
        Population.__init__(
            self, 
            geometry = self.population.geometry, 
            name=name, 
            neuron = Neuron(
                parameters="""
                    scaling = %(scaling)s : population
                """ % {'scaling': scaling} ,
                equations="""
                    p = Uniform(0.0, 1.0)
                    rates = p
                """,
                spike="rates>p",
                refractory=refractory
            ) 
        )

        self._specific = True
Example #7
0
    def __init__(self, geometry, name=None, copied=False):
        """        
        *Parameters*:
    
        * *geometry*: population geometry as tuple. It must correspond to the image size and be fixed through the whole simulation.

        * *name*: unique name of the population (optional).
        
        About the geometry:
        
        * If the geometry is 2D, it corresponds to the (height, width) of the image. Only the luminance of the pixels will be represented (grayscale image).
    
        * If the geometry is 3D, the third dimension can be either 1 (grayscale) or 3 (color).
        
        If the third dimension is 3, each will correspond to the RGB values of the pixels.
        
        .. warning::
        
            Due to the indexing system of Numpy, a 640*480 image should be fed into a (480, 640) or (480, 640, 3) population.

        
        """   
        # Check geometry
        if isinstance(geometry, int) or len(geometry)==1:
            Global._error('The geometry of an ImagePopulation should be 2D (grayscale) or 3D (color).')
            
        if len(geometry)==3 and (geometry[2]!=3 and geometry[2]!=1):
            Global._error('The third dimension of an ImagePopulation should be either 1 (grayscale) or 3 (color).') 
                        
        if len(geometry)==3 and geometry[2]==1:
            geometry = (int(geometry[0]), int(geometry[1]))
            
        # Create the population     
        Population.__init__(self, geometry = geometry, name=name, neuron = Neuron(parameters="r = 0.0"), copied=copied)
Example #8
0
 def __init__(self, geometry, neuron, name=None, copied=False):
     """
     Initialization, receive default arguments of Population objects.
     """
     Population.__init__(self,
                         geometry=geometry,
                         neuron=neuron,
                         name=name,
                         stop_condition=None,
                         storage_order='post_to_pre',
                         copied=copied)
Example #9
0
    def __init__(self, geometry, rates, corr, tau, name=None, refractory=None):
        """        
        *Parameters*:
        
        * **geometry**: population geometry as tuple. 

        * **rates**: rate in Hz of the population (must be a positive float)

        * **corr**: total correlation strength (float in [0, 1])

        * **tau**: correlation time constant in ms. 

        * **name**: unique name of the population (optional).

        * **refractory**: refractory period in ms (careful: may break the correlation)
        """  
        # Store parameters
        self.rates = float(rates)
        self.corr = corr

        # Correction of mu and sigma
        mu, sigma = self._rectify(self.rates, self.corr, tau)

        # Create the neuron
        corr_neuron = Neuron(
            parameters = """
                tau = %(tau)s : population
                mu = %(mu)s : population
                sigma = %(sigma)s : population
            """ % {'tau': tau, 'mu': mu, 'sigma': sigma},
            equations = """
                x += dt*(mu - x)/tau + sqrt(dt/tau) * sigma * Normal(0., 1.) : population, init=%(mu)s
                p = Uniform(0.0, 1.0) * 1000.0 / dt
            """ % {'mu': mu},
            spike = "p < x",
            refractory=refractory,
            name="HomogeneousCorrelated",
            description="Homogeneous correlated spike trains."
        )

        Population.__init__(self, geometry=geometry, neuron=corr_neuron, name=name)
Example #10
0
    def __init__(self, geometry, name=None, rates=None, target=None, parameters=None, refractory=None):
        """        
        *Parameters*:
        
        * **geometry**: population geometry as tuple. 

        * **name**: unique name of the population (optional).

        * **rates**: mean firing rate of each neuron. It can be a single value (e.g. 10.0) or an equation (as string).

        * **target**: the mean firing rate will be the weighted sum of inputs having this target name (e.g. "exc").

        * **parameters**: additional parameters which can be used in the *rates* equation.

        * **refractory**: refractory period in ms.
        """  
        if rates is None and target is None:
            Global._error('A PoissonPopulation must define either rates or target.')
            

        if target is not None: # hybrid population
            # Create the neuron
            poisson_neuron = Neuron(
                parameters = """
                %(params)s
                """ % {'params': parameters if parameters else ''},
                equations = """
                rates = sum(%(target)s)
                p = Uniform(0.0, 1.0) * 1000.0 / dt
                _sum_%(target)s = 0.0
                """ % {'target': target},
                spike = """
                    p < rates
                """,
                refractory=refractory,
                name="Hybrid",
                description="Hybrid spiking neuron emitting spikes according to a Poisson distribution at a frequency determined by the weighted sum of inputs."
            )


        elif isinstance(rates, str):
            # Create the neuron
            poisson_neuron = Neuron(
                parameters = """
                %(params)s
                """ % {'params': parameters if parameters else ''},
                equations = """
                rates = %(rates)s
                p = Uniform(0.0, 1.0) * 1000.0 / dt
                _sum_exc = 0.0
                """ % {'rates': rates},
                spike = """
                    p < rates
                """,
                refractory=refractory,
                name="Poisson",
                description="Spiking neuron with spikes emitted according to a Poisson distribution."
            )

        elif isinstance(rates, np.ndarray):
            poisson_neuron = Neuron(
                parameters = """
                rates = 10.0
                """,
                equations = """
                p = Uniform(0.0, 1.0) * 1000.0 / dt
                """,
                spike = """
                p < rates
                """,
                refractory=refractory,
                name="Poisson",
                description="Spiking neuron with spikes emitted according to a Poisson distribution."
            )
        else:
            poisson_neuron = Neuron(
                parameters = """
                rates = %(rates)s
                """ % {'rates': rates},
                equations = """
                p = Uniform(0.0, 1.0) * 1000.0 / dt
                """,
                spike = """
                p < rates
                """,
                refractory=refractory,
                name="Poisson",
                description="Spiking neuron with spikes emitted according to a Poisson distribution."
            )
        Population.__init__(self, geometry=geometry, neuron=poisson_neuron, name=name)
        
        if isinstance(rates, np.ndarray):
            self.rates = rates
Example #11
0
    def _create_isi(self):

        # Create the description, but it will not be used for generation
        Population.__init__(
            self, 
            geometry = self.population.geometry, 
            name=self.name, 
            neuron = Neuron(
                parameters="""
                    cut = %(cut)s : population
                    scaling = %(scaling)s : population
                    smooth = %(smooth)s : population
                """ % {'cut': self.cut, 'scaling': self.scaling, 'smooth': self.smooth} ,
                equations="r = 0.0"
            ) 
        )

        # Generate specific code
        omp_code = "#pragma omp parallel for" if Global.config['num_threads'] > 1 else ""
        code = """#pragma once

#include "pop%(id_pre)s.hpp"
extern PopStruct%(id_pre)s pop%(id_pre)s;

struct PopStruct%(id)s{
    // Number of neurons
    int size;
    bool _active;

    // Global parameter cut
    double  cut ;

    // Global parameter scaling
    double  scaling ;

    // Global parameter smooth
    double  smooth ;

    // Local variable r
    std::vector< double > r ;

    // Store the last spike
    std::vector< long int > last_spike;
    std::vector< double > isi;
    std::vector< double > support;

    int get_size() { return size; }
    void set_size(int value) { size = value; }

    bool is_active() { return _active; }
    void set_active(bool value) { _active = value; }

    double get_cut() { return cut; }
    void set_cut(double value) { cut = value; }

    double get_scaling() { return scaling; }
    void set_scaling(double value) { scaling = value; }

    double get_smooth() { return smooth; }
    void set_smooth(double value) { smooth = value; }

    std::vector< double > get_r() { return r; }
    void set_r(std::vector< double > value) { r = value; }
    double get_single_r(int rk) { return r[rk]; }
    void set_single_r(int rk, double value) { r[rk] = value; }

    void init_population() {
        size = %(size)s;
        _active = true;

        last_spike = std::vector< long int >(size, -10000L);
        isi = std::vector< double >(size, 10000.0);
        support = std::vector< double >(size, 10000.0);
    }

    void update_rng() {

    }

    void update() {
        // Updating the local variables of Spike2Rate population %(id)s
        if(_active){
            %(omp_code)s
            for(int i = 0; i < size; i++){
                // Increase when spiking
                if (pop%(id_pre)s.last_spike[i] == t-1){
                   isi[i] = double(t-1 - last_spike[i]);
                   support[i] = double(t-1 - last_spike[i]);
                   last_spike[i] = t-1;
                }
                else if( double(t - last_spike[i]) <= isi[i]){
                        // do nothing
                }
                else if( double(t - last_spike[i]) <= cut*isi[i]){
                        support[i] += 1.0 ;
                }
                else{
                    support[i] = 10000.0 ;
                }

                r[i] += dt*(1000.0/scaling/support[i]/dt - r[i])/smooth;
            }
        }
    }
};
""" % {'id' : self.id, 'id_pre': self.population.id, 'omp_code': omp_code, 'size': self.size }

        return code
Example #12
0
    def _create_adaptive(self):

        # Create the description, but it will not be used for generation
        Population.__init__(
            self, 
            geometry = self.population.geometry, 
            name=self.name, 
            neuron = Neuron(
                parameters="""
                    window = %(window)s : population
                    scaling = %(scaling)s : population
                    smooth = %(smooth)s : population
                """ % {'window': self.window, 'scaling': self.scaling, 'smooth': self.smooth} ,
                equations="r = 0.0"
            ) 
        )

        # Generate specific code
        omp_code = "#pragma omp parallel for private(pop%(id)s_nb, pop%(id)s_out)" if Global.config['num_threads'] > 1 else ""
        code = """#pragma once

#include "pop%(id_pre)s.hpp"
extern PopStruct%(id_pre)s pop%(id_pre)s;

struct PopStruct%(id)s{
    // Number of neurons
    int size;
    bool _active;

    // Local parameter window
    double  window ;
    std::vector< double >  ad_window ;

    // Global parameter scaling
    double  scaling ;

    // Global parameter smooth
    double  smooth ;

    // Local variable r
    std::vector< double > r ;
    std::vector< std::vector< double > > recorded_r ;
    bool record_r ;

    // Store the last spikes
    std::vector< std::vector<long int> > last_spikes;
    std::vector< double > isi;

    int get_size() { return size; }
    void set_size(int value) { size = value; }

    bool is_active() { return _active; }
    void set_active(bool value) { _active = value; }

    double get_window() { return window; }
    void set_window(double value) { window = value; }

    double get_scaling() { return scaling; }
    void set_scaling(double value) { scaling = value; }

    double get_smooth() { return smooth; }
    void set_smooth(double value) { smooth = value; }

    std::vector< double > get_r() { return r; }
    void set_r(std::vector< double > value) { r = value; }
    double get_single_r(int rk) { return r[rk]; }
    void set_single_r(int rk, double value) { r[rk] = value; }

    void init_population() {
        size = %(size)s;
        _active = true;

        last_spikes = std::vector< std::vector<long int> >(size, std::vector<long int>());
        ad_window = std::vector< double >(size, window);
        isi = std::vector< double >(size, 10000.0);
    }

    void update_rng() {

    }

    void update() {
        // Updating the local variables of Spike2Rate population %(id)s
        if(_active){
            int pop%(id)s_nb, pop%(id)s_out;
            %(omp_code)s
            for(int i = 0; i < size; i++){
                // Increase when spiking
                if (pop%(id_pre)s.last_spike[i] == t-1){
                    if(last_spikes[i].size() > 0)
                        isi[i] = double(t-1 - last_spikes[i][last_spikes[i].size()-1]);
                    else
                        isi[i] = 10000.0;
                    last_spikes[i].push_back(t-1);
                }
                pop%(id)s_nb = 0;
                pop%(id)s_out = -1;
                for(int j=0; j < last_spikes[i].size(); j++){
                    if(last_spikes[i][j] >= t -1 - (long int)(ad_window[i]/dt) ){
                        pop%(id)s_nb++;
                    }
                    else{
                        pop%(id)s_out = j;
                    }
                }

                if (pop%(id)s_out > -1){
                    last_spikes[i].erase(last_spikes[i].begin(), last_spikes[i].begin()+pop%(id)s_out);
                }

                r[i] += dt*(1000.0/scaling / ad_window[i] * double(pop%(id)s_nb) - r[i] ) / smooth;

                //ad_window[i] = clip(5.0*isi[i], 20.0*dt, window) ;
                ad_window[i] += dt * (clip(5.0*isi[i], 20.0*dt, window) - ad_window[i])/100.0;
                if (i==0)
                    std::cout << ad_window[i] << " " << isi[i] << std::endl;
            }
        }
    }
};
""" % {'id' : self.id, 'id_pre': self.population.id, 'omp_code': omp_code, 'size': self.size}

        return code
Example #13
0
 def __init__(self, geometry, neuron, name=None, copied=False):
     """
     Initialization, receive default arguments of Population objects.
     """
     Population.__init__(self, geometry=geometry, neuron=neuron, name=name, stop_condition=None, storage_order='post_to_pre', copied=copied)
Example #14
0
    def _create_adaptive(self):

        # Create the description, but it will not be used for generation
        Population.__init__(self,
                            geometry=self.population.geometry,
                            name=self.name,
                            neuron=Neuron(parameters="""
                    window = %(window)s : population
                    scaling = %(scaling)s : population
                    smooth = %(smooth)s : population
                """ % {
                                'window': self.window,
                                'scaling': self.scaling,
                                'smooth': self.smooth
                            },
                                          equations="r = 0.0"),
                            copied=self.copied)

        # Generate specific code
        omp_code = "#pragma omp parallel for private(pop%(id)s_nb, pop%(id)s_out)" if Global.config[
            'num_threads'] > 1 else ""
        code = """#pragma once

#include "pop%(id_pre)s.hpp"
extern PopStruct%(id_pre)s pop%(id_pre)s;

struct PopStruct%(id)s{
    // Number of neurons
    int size;
    bool _active;

    // Local parameter window
    %(float_prec)s  window ;
    std::vector< %(float_prec)s >  ad_window ;

    // Global parameter scaling
    %(float_prec)s  scaling ;

    // Global parameter smooth
    %(float_prec)s  smooth ;

    // Local variable r
    std::vector< %(float_prec)s > r ;
    std::vector< std::vector< %(float_prec)s > > recorded_r ;
    bool record_r ;

    // Store the last spikes
    std::vector< std::vector<long int> > last_spikes;
    std::vector< %(float_prec)s > isi;

    int get_size() { return size; }
    void set_size(int value) { size = value; }

    bool is_active() { return _active; }
    void set_active(bool value) { _active = value; }

    %(float_prec)s get_window() { return window; }
    void set_window(%(float_prec)s value) { window = value; }

    %(float_prec)s get_scaling() { return scaling; }
    void set_scaling(%(float_prec)s value) { scaling = value; }

    %(float_prec)s get_smooth() { return smooth; }
    void set_smooth(%(float_prec)s value) { smooth = value; }

    std::vector< %(float_prec)s > get_r() { return r; }
    void set_r(std::vector< %(float_prec)s > value) { r = value; }
    %(float_prec)s get_single_r(int rk) { return r[rk]; }
    void set_single_r(int rk, %(float_prec)s value) { r[rk] = value; }

    void init_population() {
        size = %(size)s;
        _active = true;

        last_spikes = std::vector< std::vector<long int> >(size, std::vector<long int>());
        ad_window = std::vector< %(float_prec)s >(size, window);
        isi = std::vector< %(float_prec)s >(size, 10000.0);
    }

    void update_rng() {

    }

    void update() {
        // Updating the local variables of Spike2Rate population %(id)s
        if(_active){
            int pop%(id)s_nb, pop%(id)s_out;
            %(omp_code)s
            for(int i = 0; i < size; i++){
                // Increase when spiking
                if (pop%(id_pre)s.last_spike[i] == t-1){
                    if(last_spikes[i].size() > 0)
                        isi[i] = %(float_prec)s(t-1 - last_spikes[i][last_spikes[i].size()-1]);
                    else
                        isi[i] = 10000.0;
                    last_spikes[i].push_back(t-1);
                }
                pop%(id)s_nb = 0;
                pop%(id)s_out = -1;
                for(int j=0; j < last_spikes[i].size(); j++){
                    if(last_spikes[i][j] >= t -1 - (long int)(ad_window[i]/dt) ){
                        pop%(id)s_nb++;
                    }
                    else{
                        pop%(id)s_out = j;
                    }
                }

                if (pop%(id)s_out > -1){
                    last_spikes[i].erase(last_spikes[i].begin(), last_spikes[i].begin()+pop%(id)s_out);
                }

                r[i] += dt*(1000.0/scaling / ad_window[i] * %(float_prec)s(pop%(id)s_nb) - r[i] ) / smooth;

                //ad_window[i] = clip(5.0*isi[i], 20.0*dt, window) ;
                ad_window[i] += dt * (clip(5.0*isi[i], 20.0*dt, window) - ad_window[i])/100.0;
                if (i==0)
                    std::cout << ad_window[i] << " " << isi[i] << std::endl;
            }
        }
    }
};
""" % {
            'id': self.id,
            'id_pre': self.population.id,
            'omp_code': omp_code,
            'size': self.size,
            'float_prec': Global.config['precision']
        }

        return code
Example #15
0
    def __init__(self, geometry, name=None, rates=None, target=None, parameters=None, refractory=None):
        """        
        *Parameters*:
        
            * *geometry*: population geometry as tuple. 

            * *name*: unique name of the population (optional).

            * *rates*: mean firing rate of each neuron. It can be a single value (e.g. 10.0) or an equation (as string).

            * *parameters*: additional parameters which can be used in the *rates* equation.

            * *refractory*: refractory period in ms.
        """  
        if rates == None and target==None:
            Global._error('A PoissonPopulation must define either rates or target.')
            exit(0)

        if target is not None: # hybrid population
            # Create the neuron
            poisson_neuron = Neuron(
                parameters = """
                %(params)s
                """ % {'params': parameters if parameters else ''},
                equations = """
                rates = sum(%(target)s)
                p = Uniform(0.0, 1.0) * 1000.0 / dt
                _sum_%(target)s = 0.0
                """ % {'target': target},
                spike = """
                    p < rates
                """,
                refractory=refractory,
                name="Hybrid",
                description="Hybrid spiking neuron emitting spikes according to a Poisson distribution at a frequency determined by the weighted sum of inputs."
            )


        elif isinstance(rates, str):
            # Create the neuron
            poisson_neuron = Neuron(
                parameters = """
                %(params)s
                """ % {'params': parameters if parameters else ''},
                equations = """
                rates = %(rates)s
                p = Uniform(0.0, 1.0) * 1000.0 / dt
                _sum_exc = 0.0
                """ % {'rates': rates},
                spike = """
                    p < rates
                """,
                refractory=refractory,
                name="Poisson",
                description="Spiking neuron with spikes emitted according to a Poisson distribution."
            )

        elif isinstance(rates, np.ndarray):
            poisson_neuron = Neuron(
                parameters = """
                rates = 10.0
                """,
                equations = """
                p = Uniform(0.0, 1.0) * 1000.0 / dt
                """,
                spike = """
                p < rates
                """,
                refractory=refractory,
                name="Poisson",
                description="Spiking neuron with spikes emitted according to a Poisson distribution."
            )
        else:
            poisson_neuron = Neuron(
                parameters = """
                rates = %(rates)s
                """ % {'rates': rates},
                equations = """
                p = Uniform(0.0, 1.0) * 1000.0 / dt
                """,
                spike = """
                p < rates
                """,
                refractory=refractory,
                name="Poisson",
                description="Spiking neuron with spikes emitted according to a Poisson distribution."
            )
        Population.__init__(self, geometry=geometry, neuron=poisson_neuron, name=name)
        
        if isinstance(rates, np.ndarray):
            self.rates = rates
Example #16
0
    def _create_isi(self):

        # Create the description, but it will not be used for generation
        Population.__init__(self,
                            geometry=self.population.geometry,
                            name=self.name,
                            neuron=Neuron(parameters="""
                    cut = %(cut)s : population
                    scaling = %(scaling)s : population
                    smooth = %(smooth)s : population
                """ % {
                                'cut': self.cut,
                                'scaling': self.scaling,
                                'smooth': self.smooth
                            },
                                          equations="r = 0.0"),
                            copied=self.copied)

        # Generate specific code
        omp_code = "#pragma omp parallel for" if Global.config[
            'num_threads'] > 1 else ""
        code = """#pragma once

#include "pop%(id_pre)s.hpp"
extern PopStruct%(id_pre)s pop%(id_pre)s;

struct PopStruct%(id)s{
    // Number of neurons
    int size;
    bool _active;

    // Global parameter cut
    %(float_prec)s cut;

    // Global parameter scaling
    %(float_prec)s  scaling;

    // Global parameter smooth
    %(float_prec)s  smooth ;

    // Local variable r
    std::vector< %(float_prec)s > r ;

    // Store the last spike
    std::vector< long int > last_spike;
    std::vector< %(float_prec)s > isi;
    std::vector< %(float_prec)s > support;

    int get_size() { return size; }
    void set_size(int value) { size = value; }

    bool is_active() { return _active; }
    void set_active(bool value) { _active = value; }

    %(float_prec)s get_cut() { return cut; }
    void set_cut(%(float_prec)s value) { cut = value; }

    %(float_prec)s get_scaling() { return scaling; }
    void set_scaling(%(float_prec)s value) { scaling = value; }

    %(float_prec)s get_smooth() { return smooth; }
    void set_smooth(%(float_prec)s value) { smooth = value; }

    std::vector< %(float_prec)s > get_r() { return r; }
    void set_r(std::vector< %(float_prec)s > value) { r = value; }
    %(float_prec)s get_single_r(int rk) { return r[rk]; }
    void set_single_r(int rk, %(float_prec)s value) { r[rk] = value; }

    void init_population() {
        size = %(size)s;
        _active = true;

        last_spike = std::vector< long int >(size, -10000L);
        isi = std::vector< %(float_prec)s >(size, 10000.0);
        support = std::vector< %(float_prec)s >(size, 10000.0);
    }

    void update_rng() {

    }

    void update() {
        // Updating the local variables of Spike2Rate population %(id)s
        if(_active){
            %(omp_code)s
            for(int i = 0; i < size; i++){
                // Increase when spiking
                if (pop%(id_pre)s.last_spike[i] == t-1){
                   isi[i] = %(float_prec)s(t-1 - last_spike[i]);
                   support[i] = %(float_prec)s(t-1 - last_spike[i]);
                   last_spike[i] = t-1;
                }
                else if( %(float_prec)s(t - last_spike[i]) <= isi[i]){
                        // do nothing
                }
                else if( %(float_prec)s(t - last_spike[i]) <= cut*isi[i]){
                        support[i] += 1.0 ;
                }
                else{
                    support[i] = 10000.0 ;
                }

                r[i] += dt*(1000.0/scaling/support[i]/dt - r[i])/smooth;
            }
        }
    }
};
""" % {
            'id': self.id,
            'id_pre': self.population.id,
            'omp_code': omp_code,
            'size': self.size,
            'float_prec': Global.config['precision']
        }

        return code
Example #17
0
    def _create_window(self):

        # Create the description, but it will not be used for generation
        Population.__init__(
            self, 
            geometry = self.population.geometry, 
            name=self.name, 
            neuron = Neuron(
                parameters="""
                    window = %(window)s : population
                    scaling = %(scaling)s : population
                    smooth = %(smooth)s : population
                """ % {'window': self.window, 'scaling': self.scaling, 'smooth': self.smooth} ,
                equations="r = 0.0"
            ) ,
            copied=self.copied
        )

        # Generate specific code
        omp_code = "#pragma omp parallel for" if Global.config['num_threads'] > 1 else ""
        code = """#pragma once

#include "pop%(id_pre)s.hpp"
extern PopStruct%(id_pre)s pop%(id_pre)s;

struct PopStruct%(id)s{
    // Number of neurons
    int size;
    bool _active;

    // Global parameter window
    %(float_prec)s  window ;

    // Global parameter scaling
    %(float_prec)s  scaling ;

    // Global parameter smooth
    %(float_prec)s  smooth ;

    // Local variable r
    std::vector< %(float_prec)s > r ;

    // Store the last spikes
    std::vector< std::vector<long int> > last_spikes;

    int get_size() { return size; }
    void set_size(int value) { size = value; }

    bool is_active() { return _active; }
    void set_active(bool value) { _active = value; }

    %(float_prec)s get_window() { return window; }
    void set_window(%(float_prec)s value) { window = value; }

    %(float_prec)s get_scaling() { return scaling; }
    void set_scaling(%(float_prec)s value) { scaling = value; }

    %(float_prec)s get_smooth() { return smooth; }
    void set_smooth(%(float_prec)s value) { smooth = value; }

    std::vector< %(float_prec)s > get_r() { return r; }
    void set_r(std::vector< %(float_prec)s > value) { r = value; }
    %(float_prec)s get_single_r(int rk) { return r[rk]; }
    void set_single_r(int rk, %(float_prec)s value) { r[rk] = value; }

    void init_population() {
        size = %(size)s;
        _active = true;

        last_spikes = std::vector< std::vector<long int> >(size, std::vector<long int>());
    }

    void update_rng() {

    }

    void update() {
        // Updating the local variables of Spike2Rate population %(id)s
        if(_active){
            int pop%(id)s_nb, pop%(id)s_out;
            %(omp_code)s
            for(int i = 0; i < size; i++){
                // Increase when spiking
                if (pop%(id_pre)s.last_spike[i] == t-1){
                   last_spikes[i].push_back(t-1);
                }
                pop%(id)s_nb = 0;
                pop%(id)s_out = -1;
                for(int j=0; j < last_spikes[i].size(); j++){
                    if(last_spikes[i][j] >= t -1 - (long int)(window/dt) ){
                        pop%(id)s_nb++;
                    }
                    else{
                        pop%(id)s_out = j;
                    }
                }

                if (pop%(id)s_out > -1){
                    last_spikes[i].erase(last_spikes[i].begin());
                }

                r[i] += dt*(1000.0/scaling / window * %(float_prec)s(pop%(id)s_nb) - r[i] ) / smooth;
            }
        }
    }
};
""" % {'id' : self.id, 'id_pre': self.population.id, 'omp_code': omp_code, 'size': self.size, 'float_prec': Global.config['precision']}

        return code