Example #1
0
def get_canonical_curies_dict(curie: Union[str, List[str]],
                              log: ARAXResponse) -> Dict[str, Dict[str, str]]:
    curies = convert_string_or_list_to_list(curie)
    try:
        synonymizer = NodeSynonymizer()
        log.debug(
            f"Sending NodeSynonymizer.get_canonical_curies() a list of {len(curies)} curies"
        )
        canonical_curies_dict = synonymizer.get_canonical_curies(curies)
        log.debug(f"Got response back from NodeSynonymizer")
    except Exception:
        tb = traceback.format_exc()
        error_type, error, _ = sys.exc_info()
        log.error(f"Encountered a problem using NodeSynonymizer: {tb}",
                  error_code=error_type.__name__)
        return {}
    else:
        if canonical_curies_dict is not None:
            unrecognized_curies = {
                input_curie
                for input_curie in canonical_curies_dict
                if not canonical_curies_dict.get(input_curie)
            }
            if unrecognized_curies:
                log.warning(
                    f"NodeSynonymizer did not return canonical info for: {unrecognized_curies}"
                )
            return canonical_curies_dict
        else:
            log.error(f"NodeSynonymizer returned None",
                      error_code="NodeNormalizationIssue")
            return {}
def get_canonical_curies_list(curie: Union[str, List[str]], log: ARAXResponse) -> List[str]:
    curies = convert_to_list(curie)
    try:
        synonymizer = NodeSynonymizer()
        log.debug(f"Sending NodeSynonymizer.get_canonical_curies() a list of {len(curies)} curies")
        canonical_curies_dict = synonymizer.get_canonical_curies(curies)
        log.debug(f"Got response back from NodeSynonymizer")
    except Exception:
        tb = traceback.format_exc()
        error_type, error, _ = sys.exc_info()
        log.error(f"Encountered a problem using NodeSynonymizer: {tb}", error_code=error_type.__name__)
        return []
    else:
        if canonical_curies_dict is not None:
            recognized_input_curies = {input_curie for input_curie in canonical_curies_dict if canonical_curies_dict.get(input_curie)}
            unrecognized_curies = set(curies).difference(recognized_input_curies)
            if unrecognized_curies:
                log.warning(f"NodeSynonymizer did not return canonical info for: {unrecognized_curies}")
            canonical_curies = {canonical_curies_dict[recognized_curie].get('preferred_curie') for recognized_curie in recognized_input_curies}
            # Include any original curies we weren't able to find a canonical version for
            canonical_curies.update(unrecognized_curies)
            if not canonical_curies:
                log.error(f"Final list of canonical curies is empty. This shouldn't happen!", error_code="CanonicalCurieIssue")
            return list(canonical_curies)
        else:
            log.error(f"NodeSynonymizer returned None", error_code="NodeNormalizationIssue")
            return []
Example #3
0
def get_preferred_categories(curie: Union[str, List[str]],
                             log: ARAXResponse) -> Optional[List[str]]:
    curies = convert_to_list(curie)
    synonymizer = NodeSynonymizer()
    log.debug(
        f"Sending NodeSynonymizer.get_canonical_curies() a list of {len(curies)} curies"
    )
    canonical_curies_dict = synonymizer.get_canonical_curies(curies)
    log.debug(f"Got response back from NodeSynonymizer")
    if canonical_curies_dict is not None:
        recognized_input_curies = {
            input_curie
            for input_curie in canonical_curies_dict
            if canonical_curies_dict.get(input_curie)
        }
        unrecognized_curies = set(curies).difference(recognized_input_curies)
        if unrecognized_curies:
            log.warning(
                f"NodeSynonymizer did not recognize: {unrecognized_curies}")
        preferred_categories = {
            canonical_curies_dict[recognized_curie].get('preferred_category')
            for recognized_curie in recognized_input_curies
        }
        if preferred_categories:
            return list(preferred_categories)
        else:
            log.warning(
                f"Unable to find any preferred categories; will default to biolink:NamedThing"
            )
            return ["biolink:NamedThing"]
    else:
        log.error(f"NodeSynonymizer returned None",
                  error_code="NodeNormalizationIssue")
        return []
Example #4
0
 def _add_inverted_predicates(qg: QueryGraph,
                              log: ARAXResponse) -> QueryGraph:
     # For now, we'll consider BOTH predicates in an inverse pair (TODO: later tailor to what we know is in KG2)
     qedge = next(qedge for qedge in qg.edges.values())
     response = requests.get(
         "https://raw.githubusercontent.com/biolink/biolink-model/master/biolink-model.yaml"
     )
     if response.status_code == 200:
         qedge.predicate = eu.convert_to_list(qedge.predicate)
         biolink_model = yaml.safe_load(response.text)
         inverse_predicates = set()
         for predicate in qedge.predicate:
             english_predicate = predicate.split(":")[-1].replace(
                 "_", " ")  # Converts to 'subclass of' format
             biolink_predicate_info = biolink_model["slots"].get(
                 english_predicate)
             if biolink_predicate_info and "inverse" in biolink_predicate_info:
                 english_inverse_predicate = biolink_predicate_info[
                     "inverse"]
                 machine_inverse_predicate = f"biolink:{english_inverse_predicate.replace(' ', '_')}"
                 inverse_predicates.add(machine_inverse_predicate)
                 log.debug(
                     f"Found inverse predicate for {predicate}: {machine_inverse_predicate}"
                 )
         qedge.predicate = list(
             set(qedge.predicate).union(inverse_predicates))
     else:
         log.warning(
             f"Cannot check for inverse predicates: Failed to load Biolink Model yaml file. "
             f"(Page gave status {response.status_code}.)")
     return qg
Example #5
0
 def _send_query_to_kp(self, query_graph: QueryGraph,
                       log: ARAXResponse) -> Dict[str, any]:
     # Send query to their API (stripping down qnode/qedges to only the properties they like)
     stripped_qnodes = []
     for qnode_key, qnode in query_graph.nodes.items():
         stripped_qnode = {'id': qnode_key, 'type': qnode.category}
         if qnode.id:
             stripped_qnode['curie'] = qnode.id
         stripped_qnodes.append(stripped_qnode)
     qedge_key = next(qedge_key for qedge_key in
                      query_graph.edges)  # Our query graph is single-edge
     qedge = query_graph.edges[qedge_key]
     stripped_qedge = {
         'id': qedge_key,
         'source_id': qedge.subject,
         'target_id': qedge.object,
         'type': list(self.accepted_edge_types)[0]
     }
     source_stripped_qnode = next(qnode for qnode in stripped_qnodes
                                  if qnode['id'] == qedge.subject)
     input_curies = eu.convert_string_or_list_to_list(
         source_stripped_qnode['curie'])
     combined_response = dict()
     for input_curie in input_curies:  # Until we have batch querying, ping them one-by-one for each input curie
         log.debug(
             f"Sending {qedge_key} query to {self.kp_name} for {input_curie}"
         )
         source_stripped_qnode['curie'] = input_curie
         kp_response = requests.post(self.kp_query_endpoint,
                                     json={
                                         'message': {
                                             'query_graph': {
                                                 'nodes': stripped_qnodes,
                                                 'edges': [stripped_qedge]
                                             }
                                         }
                                     },
                                     headers={'accept': 'application/json'})
         if kp_response.status_code != 200:
             log.warning(
                 f"{self.kp_name} KP API returned response of {kp_response.status_code}"
             )
         else:
             kp_response_json = kp_response.json()
             if kp_response_json.get('results'):
                 if not combined_response:
                     combined_response = kp_response_json
                 else:
                     combined_response['knowledge_graph'][
                         'nodes'] += kp_response_json['knowledge_graph'][
                             'nodes']
                     combined_response['knowledge_graph'][
                         'edges'] += kp_response_json['knowledge_graph'][
                             'edges']
                     combined_response['results'] += kp_response_json[
                         'results']
     return combined_response
Example #6
0
def get_curie_names(curie: Union[str, List[str]],
                    log: ARAXResponse) -> Dict[str, str]:
    curies = convert_to_list(curie)
    synonymizer = NodeSynonymizer()
    log.debug(
        f"Looking up names for {len(curies)} input curies using NodeSynonymizer"
    )
    synonymizer_info = synonymizer.get_normalizer_results(curies)
    curie_to_name_map = dict()
    if synonymizer_info:
        recognized_input_curies = {
            input_curie
            for input_curie in synonymizer_info
            if synonymizer_info.get(input_curie)
        }
        unrecognized_curies = set(curies).difference(recognized_input_curies)
        if unrecognized_curies:
            log.warning(
                f"NodeSynonymizer did not recognize: {unrecognized_curies}")
        input_curies_without_matching_node = set()
        for input_curie in recognized_input_curies:
            equivalent_nodes = synonymizer_info[input_curie]["nodes"]
            # Find the 'node' in the synonymizer corresponding to this curie
            input_curie_nodes = [
                node for node in equivalent_nodes
                if node["identifier"] == input_curie
            ]
            if not input_curie_nodes:
                # Try looking for slight variation (KG2 vs. SRI discrepancy): "KEGG:C02700" vs. "KEGG.COMPOUND:C02700"
                input_curie_stripped = input_curie.replace(".COMPOUND", "")
                input_curie_nodes = [
                    node for node in equivalent_nodes
                    if node["identifier"] == input_curie_stripped
                ]
            # Record the name for this input curie
            if input_curie_nodes:
                curie_to_name_map[input_curie] = input_curie_nodes[0].get(
                    "label")
            else:
                input_curies_without_matching_node.add(input_curie)
        if input_curies_without_matching_node:
            log.warning(
                f"No matching nodes found in NodeSynonymizer for these input curies: "
                f"{input_curies_without_matching_node}. Cannot determine their specific names."
            )
    else:
        log.error(f"NodeSynonymizer returned None",
                  error_code="NodeNormalizationIssue")
    return curie_to_name_map
Example #7
0
def check_for_canonical_predicates(
        kg: QGOrganizedKnowledgeGraph, kp_name: str,
        log: ARAXResponse) -> QGOrganizedKnowledgeGraph:
    non_canonical_predicates_used = set()
    biolink_helper = BiolinkHelper()
    for qedge_id, edges in kg.edges_by_qg_id.items():
        for edge in edges.values():
            canonical_predicate = biolink_helper.get_canonical_predicates(
                edge.predicate)[0]
            if canonical_predicate != edge.predicate:
                non_canonical_predicates_used.add(edge.predicate)
                _ = flip_edge(edge, canonical_predicate)
    if non_canonical_predicates_used:
        log.warning(
            f"{kp_name}: Found edges in {kp_name}'s answer that use non-canonical "
            f"predicates: {non_canonical_predicates_used}. I corrected these.")
    return kg
Example #8
0
 def _answer_query_using_plover(
     qg: QueryGraph, log: ARAXResponse
 ) -> Tuple[Dict[str, Dict[str, Set[Union[str, int]]]], int]:
     rtxc = RTXConfiguration()
     rtxc.live = "Production"
     log.debug(f"Sending query to Plover")
     response = requests.post(f"{rtxc.plover_url}/query",
                              json=qg.to_dict(),
                              headers={'accept': 'application/json'})
     if response.status_code == 200:
         log.debug(f"Got response back from Plover")
         return response.json(), response.status_code
     else:
         log.warning(
             f"Plover returned a status code of {response.status_code}. Response was: {response.text}"
         )
         return dict(), response.status_code
Example #9
0
def update_results_with_overlay_edge(subject_knode_key: str, object_knode_key: str, kedge_key: str, message: Message, log: ARAXResponse):
    try:
        new_edge_binding = EdgeBinding(id=kedge_key)
        for result in message.results:
            for qedge_key in result.edge_bindings.keys():
                if kedge_key not in set([x.id for x in result.edge_bindings[qedge_key]]):
                    if qedge_key not in message.query_graph.edges:
                        log.warning(f"Encountered a result edge binding which does not exist in the query graph")
                        continue
                    subject_nodes = [x.id for x in result.node_bindings[message.query_graph.edges[qedge_key].subject]]
                    object_nodes = [x.id for x in result.node_bindings[message.query_graph.edges[qedge_key].object]]
                    result_nodes = set(subject_nodes).union(set(object_nodes))
                    if subject_knode_key in result_nodes and object_knode_key in result_nodes:
                        result.edge_bindings[qedge_key].append(new_edge_binding)
    except:
        tb = traceback.format_exc()
        log.error(f"Error encountered when modifying results with overlay edge (subject_knode_key)-kedge_key-(object_knode_key):\n{tb}",
                    error_code="UncaughtError")
Example #10
0
def get_node_pairs_to_overlay(subject_qnode_key: str, object_qnode_key: str, query_graph: QueryGraph,
                              knowledge_graph: KnowledgeGraph, log: ARAXResponse) -> Set[Tuple[str, str]]:
    """
    This function determines which combinations of subject/object nodes in the KG need to be overlayed (e.g., have a
    virtual edge added between). It makes use of Resultify to determine what combinations of subject and object nodes
    may actually appear together in the same Results. (See issue #1069.) If it fails to narrow the node pairs for
    whatever reason, it defaults to returning all possible combinations of subject/object nodes.
    """
    log.debug(f"Narrowing down {subject_qnode_key}--{object_qnode_key} node pairs to overlay")
    kg_nodes_by_qg_id = get_node_ids_by_qg_id(knowledge_graph)
    kg_edges_by_qg_id = get_edge_ids_by_qg_id(knowledge_graph)
    # Grab the portion of the QG already 'expanded' (aka, present in the KG)
    sub_query_graph = QueryGraph(nodes={key:qnode for key, qnode in query_graph.nodes.items() if key in set(kg_nodes_by_qg_id)},
                                 edges={key:qedge for key, qedge in query_graph.edges.items() if key in set(kg_edges_by_qg_id)})

    # Compute results using Resultify so we can see which nodes appear in the same results
    resultifier = ARAXResultify()
    sub_response = ARAXResponse()
    sub_response.envelope = Response()
    sub_response.envelope.message = Message()
    sub_message = sub_response.envelope.message
    sub_message.query_graph = sub_query_graph
    sub_message.knowledge_graph = KnowledgeGraph(nodes=knowledge_graph.nodes.copy(),
                                                 edges=knowledge_graph.edges.copy())
    #sub_response.envelope.message = sub_message
    resultify_response = resultifier.apply(sub_response, {})

    # Figure out which node pairs appear together in one or more results
    if resultify_response.status == 'OK':
        node_pairs = set()
        for result in sub_message.results:
            subject_curies_in_this_result = {node_binding.id for key, node_binding_list in result.node_bindings.items() for node_binding in node_binding_list if
                                            key == subject_qnode_key}
            object_curies_in_this_result = {node_binding.id for key, node_binding_list in result.node_bindings.items() for node_binding in node_binding_list if
                                            key == object_qnode_key}
            pairs_in_this_result = set(itertools.product(subject_curies_in_this_result, object_curies_in_this_result))
            node_pairs = node_pairs.union(pairs_in_this_result)
        log.debug(f"Identified {len(node_pairs)} node pairs to overlay (with help of resultify)")
        if node_pairs:
            return node_pairs
    # Back up to using the old (O(n^2)) method of all combinations of subject/object nodes in the KG
    log.warning(f"Failed to narrow down node pairs to overlay; defaulting to all possible combinations")
    return set(itertools.product(kg_nodes_by_qg_id[subject_qnode_key], kg_nodes_by_qg_id[object_qnode_key]))
Example #11
0
 def _answer_query_using_plover(qg: QueryGraph, log: ARAXResponse) -> Tuple[Dict[str, Dict[str, Union[set, dict]]], int]:
     rtxc = RTXConfiguration()
     rtxc.live = "Production"
     # First prep the query graph (requires some minor additions for Plover)
     dict_qg = qg.to_dict()
     dict_qg["include_metadata"] = True  # Ask plover to return node/edge objects (not just IDs)
     dict_qg["respect_predicate_symmetry"] = True  # Ignore direction for symmetric predicate, enforce for asymmetric
     # Allow subclass_of reasoning for qnodes with a small number of curies
     for qnode in dict_qg["nodes"].values():
         if qnode.get("ids") and len(qnode["ids"]) < 5:
             if "allow_subclasses" not in qnode or qnode["allow_subclasses"] is None:
                 qnode["allow_subclasses"] = True
     # Then send the actual query
     response = requests.post(f"{rtxc.plover_url}/query", json=dict_qg, timeout=60,
                              headers={'accept': 'application/json'})
     if response.status_code == 200:
         log.debug(f"Got response back from Plover")
         return response.json(), response.status_code
     else:
         log.warning(f"Plover returned a status code of {response.status_code}. Response was: {response.text}")
         return dict(), response.status_code
Example #12
0
def get_curie_synonyms(curie: Union[str, List[str]],
                       log: ARAXResponse) -> List[str]:
    curies = convert_string_or_list_to_list(curie)
    try:
        synonymizer = NodeSynonymizer()
        log.debug(
            f"Sending NodeSynonymizer.get_equivalent_nodes() a list of {len(curies)} curies"
        )
        equivalent_curies_dict = synonymizer.get_equivalent_nodes(
            curies, kg_name="KG2")
        log.debug(f"Got response back from NodeSynonymizer")
    except Exception:
        tb = traceback.format_exc()
        error_type, error, _ = sys.exc_info()
        log.error(f"Encountered a problem using NodeSynonymizer: {tb}",
                  error_code=error_type.__name__)
        return []
    else:
        if equivalent_curies_dict is not None:
            curies_missing_info = {
                curie
                for curie in equivalent_curies_dict
                if not equivalent_curies_dict.get(curie)
            }
            if curies_missing_info:
                log.warning(
                    f"NodeSynonymizer did not find any equivalent curies for: {curies_missing_info}"
                )
            equivalent_curies = {
                curie
                for curie_dict in equivalent_curies_dict.values() if curie_dict
                for curie in curie_dict
            }
            all_curies = equivalent_curies.union(set(
                curies))  # Make sure even curies without synonyms are included
            return sorted(list(all_curies))
        else:
            log.error(f"NodeSynonymizer returned None",
                      error_code="NodeNormalizationIssue")
            return []
Example #13
0
def sort_kps_for_asyncio(kp_names: Union[List[str], Set[str]],
                         log: ARAXResponse) -> List[str]:
    # Order KPs such that those with longer requests will tend to be kicked off earlier
    kp_names = set(kp_names)
    asyncio_start_order = [
        "infores:connections-hypothesis", "infores:biothings-explorer",
        "infores:biothings-multiomics-biggim-drug-response",
        "infores:biothings-multiomics-clinical-risk",
        "infores:biothings-multiomics-wellness", "infores:spoke",
        "infores:biothings-tcga-mut-freq", "infores:icees-dili",
        "infores:icees-asthma", "infores:cohd", "infores:molepro",
        "infores:rtx-kg2", "infores:genetics-data-provider",
        "infores:arax-normalized-google-distance",
        "infores:arax-drug-treats-disease"
    ]
    unordered_kps = kp_names.difference(set(asyncio_start_order))
    if unordered_kps:
        log.warning(
            f"Selected KP(s) don't have asyncio start ordering specified: {unordered_kps}"
        )
        asyncio_start_order = list(unordered_kps) + asyncio_start_order
    ordered_kps = [kp for kp in asyncio_start_order if kp in kp_names]
    return ordered_kps
Example #14
0
 def _pre_process_query_graph(self, query_graph: QueryGraph,
                              log: ARAXResponse) -> QueryGraph:
     for qnode_key, qnode in query_graph.nodes.items():
         # Convert node types to preferred format and verify we can do this query
         formatted_qnode_categories = {
             self.node_category_overrides_for_kp.get(
                 qnode_category, qnode_category)
             for qnode_category in eu.convert_string_or_list_to_list(
                 qnode.category)
         }
         accepted_qnode_categories = formatted_qnode_categories.intersection(
             self.accepted_node_categories)
         if not accepted_qnode_categories:
             log.error(
                 f"{self.kp_name} can only be used for queries involving {self.accepted_node_categories} "
                 f"and QNode {qnode_key} has category '{qnode.category}'",
                 error_code="UnsupportedQueryForKP")
             return query_graph
         else:
             qnode.category = list(accepted_qnode_categories)[0]
         # Convert curies to equivalent curies accepted by the KP (depending on qnode type)
         if qnode.id:
             equivalent_curies = eu.get_curie_synonyms(qnode.id, log)
             desired_curies = [
                 curie for curie in equivalent_curies if curie.startswith(
                     f"{self.kp_preferred_prefixes[qnode.category]}:")
             ]
             if desired_curies:
                 qnode.id = desired_curies if len(
                     desired_curies) > 1 else desired_curies[0]
                 log.debug(
                     f"Converted qnode {qnode_key} curie to {qnode.id}")
             else:
                 log.warning(
                     f"Could not convert qnode {qnode_key} curie(s) to preferred prefix ({self.kp_preferred_prefixes[qnode.category]})"
                 )
     return query_graph
Example #15
0
def create_results(
    qg: QueryGraph,
    kg: QGOrganizedKnowledgeGraph,
    log: ARAXResponse,
    overlay_fet: bool = False,
    rank_results: bool = False,
    qnode_key_to_prune: Optional[str] = None,
) -> Response:
    regular_format_kg = convert_qg_organized_kg_to_standard_kg(kg)
    resultifier = ARAXResultify()
    prune_response = ARAXResponse()
    prune_response.envelope = Response()
    prune_response.envelope.message = Message()
    prune_message = prune_response.envelope.message
    prune_message.query_graph = qg
    prune_message.knowledge_graph = regular_format_kg
    if overlay_fet:
        log.debug(
            f"Using FET to assess quality of intermediate answers in Expand")
        connected_qedges = [
            qedge for qedge in qg.edges.values()
            if qedge.subject == qnode_key_to_prune
            or qedge.object == qnode_key_to_prune
        ]
        qnode_pairs_to_overlay = {
            (qedge.subject if qedge.subject != qnode_key_to_prune else
             qedge.object, qnode_key_to_prune)
            for qedge in connected_qedges
        }
        for qnode_pair in qnode_pairs_to_overlay:
            pair_string_id = f"{qnode_pair[0]}-->{qnode_pair[1]}"
            log.debug(f"Overlaying FET for {pair_string_id} (from Expand)")
            fet_qedge_key = f"FET{pair_string_id}"
            try:
                overlayer = ARAXOverlay()
                params = {
                    "action": "fisher_exact_test",
                    "subject_qnode_key": qnode_pair[0],
                    "object_qnode_key": qnode_pair[1],
                    "virtual_relation_label": fet_qedge_key
                }
                overlayer.apply(prune_response, params)
            except Exception as error:
                exception_type, exception_value, exception_traceback = sys.exc_info(
                )
                log.warning(
                    f"An uncaught error occurred when overlaying with FET during Expand's pruning: {error}: "
                    f"{repr(traceback.format_exception(exception_type, exception_value, exception_traceback))}"
                )
            if prune_response.status != "OK":
                log.warning(
                    f"FET produced an error when Expand tried to use it to prune the KG. "
                    f"Log was: {prune_response.show()}")
                log.debug(f"Will continue pruning without overlaying FET")
                # Get rid of any FET edges that might be in the KG/QG, since this step failed
                remove_edges_with_qedge_key(
                    prune_response.envelope.message.knowledge_graph,
                    fet_qedge_key)
                qg.edges.pop(fet_qedge_key, None)
                prune_response.status = "OK"  # Clear this so we can continue without overlaying
            else:
                if fet_qedge_key in qg.edges:
                    qg.edges[
                        fet_qedge_key].option_group_id = f"FET_VIRTUAL_GROUP_{pair_string_id}"
                else:
                    log.warning(
                        f"Attempted to overlay FET from Expand, but it didn't work. Pruning without it."
                    )

    # Create results and rank them as appropriate
    log.debug(f"Calling Resultify from Expand for pruning")
    resultifier.apply(prune_response, {})
    if rank_results:
        try:
            log.debug(f"Ranking Expand's intermediate pruning results")
            ranker = ARAXRanker()
            ranker.aggregate_scores_dmk(prune_response)
        except Exception as error:
            exception_type, exception_value, exception_traceback = sys.exc_info(
            )
            log.error(
                f"An uncaught error occurred when attempting to rank results during Expand's pruning: "
                f"{error}: {repr(traceback.format_exception(exception_type, exception_value, exception_traceback))}."
                f"Log was: {prune_response.show()}",
                error_code="UncaughtARAXiError")
            # Give any unranked results a score of 0
            for result in prune_response.envelope.message.results:
                if result.score is None:
                    result.score = 0
    return prune_response
Example #16
0
    def _validate_and_pre_process_input(qg: QueryGraph,
                                        valid_bte_inputs_dict: Dict[str,
                                                                    Set[str]],
                                        enforce_directionality: bool,
                                        use_synonyms: bool,
                                        log: ARAXResponse) -> Tuple[str, str]:
        # Make sure we have a valid one-hop query graph
        if len(qg.edges) != 1 or len(qg.nodes) != 2:
            log.error(
                f"BTE can only accept one-hop query graphs (your QG has {len(qg.nodes)} nodes and "
                f"{len(qg.edges)} edges)",
                error_code="InvalidQueryGraph")
            return "", ""
        qedge_key = next(qedge_key for qedge_key in qg.edges)
        qedge = qg.edges[qedge_key]

        # Make sure at least one of our qnodes has a curie
        qnodes_with_curies = [
            qnode_key for qnode_key, qnode in qg.nodes.items() if qnode.id
        ]
        if not qnodes_with_curies:
            log.error(
                f"Neither qnode for qedge {qedge_key} has a curie specified. BTE requires that at least one of "
                f"them has a curie. Your query graph is: {qg.to_dict()}",
                error_code="UnsupportedQueryForKP")
            return "", ""

        # Figure out which query node is input vs. output
        if enforce_directionality:
            input_qnode_key = qedge.subject
            output_qnode_key = qedge.object
        else:
            input_qnode_key = next(qnode_key
                                   for qnode_key, qnode in qg.nodes.items()
                                   if qnode.id)
            output_qnode_key = list(
                set(qg.nodes).difference({input_qnode_key}))[0]
            log.warning(
                f"BTE cannot do bidirectional queries; the query for this edge will be directed, going: "
                f"{input_qnode_key}-->{output_qnode_key}")
        input_qnode = qg.nodes[input_qnode_key]
        output_qnode = qg.nodes[output_qnode_key]

        # Make sure predicate is allowed
        if qedge.predicate not in valid_bte_inputs_dict[
                'predicates'] and qedge.predicate is not None:
            log.error(
                f"BTE does not accept predicate '{qedge.predicate}'. Valid options are "
                f"{valid_bte_inputs_dict['predicates']}",
                error_code="InvalidInput")
            return "", ""

        # Process qnode types (convert to preferred format, make sure allowed)
        input_qnode.category = [
            eu.convert_string_to_pascal_case(node_category) for node_category
            in eu.convert_string_or_list_to_list(input_qnode.category)
        ]
        output_qnode.category = [
            eu.convert_string_to_pascal_case(node_category) for node_category
            in eu.convert_string_or_list_to_list(output_qnode.category)
        ]
        qnodes_missing_type = [
            qnode_key for qnode_key in [input_qnode_key, output_qnode_key]
            if not qg.nodes[qnode_key].category
        ]
        if qnodes_missing_type:
            log.error(
                f"BTE requires every query node to have a category. QNode(s) missing a category: "
                f"{', '.join(qnodes_missing_type)}",
                error_code="InvalidInput")
            return "", ""
        invalid_qnode_categories = [
            node_category for qnode in [input_qnode, output_qnode]
            for node_category in qnode.category
            if node_category not in valid_bte_inputs_dict['node_categories']
        ]
        if invalid_qnode_categories:
            log.error(
                f"BTE does not accept QNode category(s): {', '.join(invalid_qnode_categories)}. Valid options are "
                f"{valid_bte_inputs_dict['node_categories']}",
                error_code="InvalidInput")
            return "", ""

        # Sub in curie synonyms as appropriate
        if use_synonyms:
            qnodes_with_curies = [
                qnode for qnode in [input_qnode, output_qnode] if qnode.id
            ]
            for qnode in qnodes_with_curies:
                synonymized_curies = eu.get_curie_synonyms(qnode.id, log)
                qnode.id = synonymized_curies

        # Make sure our input node curies are in list form and use prefixes BTE prefers
        input_curie_list = eu.convert_string_or_list_to_list(input_qnode.id)
        input_qnode.id = [
            eu.convert_curie_to_bte_format(curie) for curie in input_curie_list
        ]

        return input_qnode_key, output_qnode_key
Example #17
0
    def assess(self, message):

        #### Define a default response
        response = ARAXResponse()
        self.response = response
        self.message = message
        response.debug(f"Assessing the QueryGraph for basic information")

        #### Get shorter handles
        query_graph = message.query_graph
        nodes = query_graph.nodes
        edges = query_graph.edges

        #### Store number of nodes and edges
        self.n_nodes = len(nodes)
        self.n_edges = len(edges)
        response.debug(f"Found {self.n_nodes} nodes and {self.n_edges} edges")

        #### Handle impossible cases
        if self.n_nodes == 0:
            response.error(
                "QueryGraph has 0 nodes. At least 1 node is required",
                error_code="QueryGraphZeroNodes")
            return response
        if self.n_nodes == 1 and self.n_edges > 0:
            response.error(
                "QueryGraph may not have edges if there is only one node",
                error_code="QueryGraphTooManyEdges")
            return response
        #if self.n_nodes == 2 and self.n_edges > 1:
        #    response.error("QueryGraph may not have more than 1 edge if there are only 2 nodes", error_code="QueryGraphTooManyEdges")
        #    return response

        #### Loop through nodes computing some stats
        node_info = {}
        self.node_category_map = {}
        for key, qnode in nodes.items():
            node_info[key] = {
                'key': key,
                'node_object': qnode,
                'has_id': False,
                'category': qnode.category,
                'has_category': False,
                'is_set': False,
                'n_edges': 0,
                'n_links': 0,
                'is_connected': False,
                'edges': [],
                'edge_dict': {}
            }
            if qnode.id is not None:
                node_info[key]['has_id'] = True

                #### If the user did not specify a category, but there is a curie, try to figure out the category
                if node_info[key]['category'] is None:
                    synonymizer = NodeSynonymizer()
                    curie = qnode.id
                    curies_list = qnode.id
                    if isinstance(qnode.id, list):
                        curie = qnode.id[0]
                    else:
                        curies_list = [qnode.id]

                    canonical_curies = synonymizer.get_canonical_curies(
                        curies=curies_list, return_all_categories=True)
                    if curie in canonical_curies and 'preferred_type' in canonical_curies[
                            curie]:
                        node_info[key]['has_category'] = True
                        node_info[key]['category'] = canonical_curies[curie][
                            'preferred_type']

            if qnode.category is not None:
                node_info[key]['has_category'] = True

            #if qnode.is_set is not None: node_info[key]['is_set'] = True
            if key is None:
                response.error(
                    "QueryGraph has a node with null key. This is not permitted",
                    error_code="QueryGraphNodeWithNoId")
                return response

            #### Remap the node categorys from unsupported to supported
            if qnode.category is not None:
                qnode.category = self.remap_node_category(qnode.category)

            #### Store lookup of categorys
            warning_counter = 0
            if qnode.category is None or (isinstance(qnode.category, list)
                                          and len(qnode.category) == 0):
                if warning_counter == 0:
                    #response.debug("QueryGraph has nodes with no category. This may cause problems with results inference later")
                    pass
                warning_counter += 1
                self.node_category_map['unknown'] = key
            else:
                category = qnode.category
                if isinstance(qnode.category, list):
                    category = qnode.category[
                        0]  # FIXME this is a hack prior to proper list handling
                self.node_category_map[category] = key

        #### Loop through edges computing some stats
        edge_info = {}
        self.edge_predicate_map = {}
        unique_links = {}

        #### Ignore special informationational edges for now.
        virtual_edge_predicates = {
            'has_normalized_google_distance_with': 1,
            'has_fisher_exact_test_p-value_with': 1,
            'has_jaccard_index_with': 1,
            'probably_treats': 1,
            'has_paired_concept_frequency_with': 1,
            'has_observed_expected_ratio_with': 1,
            'has_chi_square_with': 1
        }

        for key, qedge in edges.items():

            predicate = qedge.predicate
            if isinstance(predicate, list):
                if len(predicate) == 0:
                    predicate = None
                else:
                    predicate = predicate[
                        0]  # FIXME Hack before dealing with predicates as lists!

            if predicate is not None and predicate in virtual_edge_predicates:
                continue

            edge_info[key] = {
                'key': key,
                'has_predicate': False,
                'subject': qedge.subject,
                'object': qedge.object,
                'predicate': None
            }
            if predicate is not None:
                edge_info[key]['has_predicate'] = True
                edge_info[key]['predicate'] = predicate

            if key is None:
                response.error(
                    "QueryGraph has a edge with null key. This is not permitted",
                    error_code="QueryGraphEdgeWithNoKey")
                return response

            #### Create a unique node link string
            link_string = ','.join(sorted([qedge.subject, qedge.object]))
            if link_string not in unique_links:
                node_info[qedge.subject]['n_links'] += 1
                node_info[qedge.object]['n_links'] += 1
                unique_links[link_string] = 1
                #print(link_string)

            node_info[qedge.subject]['n_edges'] += 1
            node_info[qedge.object]['n_edges'] += 1
            node_info[qedge.subject]['is_connected'] = True
            node_info[qedge.object]['is_connected'] = True
            #node_info[qedge.subject]['edges'].append(edge_info[key])
            #node_info[qedge.object]['edges'].append(edge_info[key])
            node_info[qedge.subject]['edges'].append(edge_info[key])
            node_info[qedge.object]['edges'].append(edge_info[key])
            node_info[qedge.subject]['edge_dict'][key] = edge_info[key]
            node_info[qedge.object]['edge_dict'][key] = edge_info[key]

            #### Store lookup of predicates
            warning_counter = 0
            edge_predicate = 'any'
            if predicate is None:
                if warning_counter == 0:
                    response.debug(
                        "QueryGraph has edges with no predicate. This may cause problems with results inference later"
                    )
                warning_counter += 1
            else:
                edge_predicate = predicate

            #### It's not clear yet whether we need to store the whole sentence or just the predicate
            #predicate_encoding = f"{node_info[qedge.subject]['predicate']}---{edge_predicate}---{node_info[qedge.object]['predicate']}"
            predicate_encoding = edge_predicate
            self.edge_predicate_map[predicate_encoding] = key

        #### Loop through the nodes again, trying to identify the start_node and the end_node
        singletons = []
        for node_id, node_data in node_info.items():
            if node_data['n_links'] < 2:
                singletons.append(node_data)
            elif node_data['n_links'] > 2:
                self.is_bifurcated_graph = True
                response.warning(
                    "QueryGraph appears to have a fork in it. This might cause trouble"
                )

        #### If this doesn't produce any singletons, then try curie based selection
        if len(singletons) == 0:
            for node_id, node_data in node_info.items():
                if node_data['has_id']:
                    singletons.append(node_data)

        #### If this doesn't produce any singletons, then we don't know how to continue
        if len(singletons) == 0:
            response.error("Unable to understand the query graph",
                           error_code="QueryGraphCircular")
            return response

        #### Try to identify the start_node and the end_node
        start_node = singletons[0]
        if len(nodes) == 1:
            # Just a single node, fine
            pass
        elif len(singletons) < 2:
            response.warning(
                "QueryGraph appears to be circular or has a strange geometry. This might cause trouble"
            )
        elif len(singletons) > 2:
            response.warning(
                "QueryGraph appears to have a fork in it. This might cause trouble"
            )
        else:
            if singletons[0]['has_id'] is True and singletons[1][
                    'has_id'] is False:
                start_node = singletons[0]
            elif singletons[0]['has_id'] is False and singletons[1][
                    'has_id'] is True:
                start_node = singletons[1]
            else:
                start_node = singletons[0]
        #### Hmm, that's not very robust against odd graphs. This needs work. FIXME

        self.node_info = node_info
        self.edge_info = edge_info
        self.start_node = start_node

        current_node = start_node
        node_order = [start_node]
        edge_order = []
        edges = current_node['edges']
        debug = False

        while 1:
            if debug:
                tmp = {
                    'astate': '1',
                    'current_node': current_node,
                    'node_order': node_order,
                    'edge_order': edge_order,
                    'edges': edges
                }
                print(
                    json.dumps(ast.literal_eval(repr(tmp)),
                               sort_keys=True,
                               indent=2))
                print(
                    '=================================================================================='
                )
                tmp = input()

            if len(edges) == 0:
                break
            #if len(edges) > 1:
            if current_node['n_links'] > 1:
                response.error(
                    f"Help, two edges at A583. Don't know what to do: {current_node['n_links']}",
                    error_code="InteralErrorA583")
                return response
            edge_order.append(edges[0])
            previous_node = current_node
            if edges[0]['subject'] == current_node['key']:
                current_node = node_info[edges[0]['object']]
            elif edges[0]['object'] == current_node['key']:
                current_node = node_info[edges[0]['subject']]
            else:
                response.error("Help, edge error A584. Don't know what to do",
                               error_code="InteralErrorA584")
                return response
            node_order.append(current_node)

            #tmp = { 'astate': '2', 'current_node': current_node, 'node_order': node_order, 'edge_order': edge_order, 'edges': edges }
            #print(json.dumps(ast.literal_eval(repr(tmp)),sort_keys=True,indent=2))
            #print('==================================================================================')
            #tmp = input()

            edges = current_node['edges']
            new_edges = []
            for edge in edges:
                key = edge['key']
                if key not in previous_node['edge_dict']:
                    new_edges.append(edge)
            edges = new_edges
            if len(edges) == 0:
                break
            #tmp = { 'astate': '3', 'current_node': current_node, 'node_order': node_order, 'edge_order': edge_order, 'edges': edges }
            #print(json.dumps(ast.literal_eval(repr(tmp)),sort_keys=True,indent=2))
            #print('==================================================================================')
            #tmp = input()

        self.node_order = node_order
        self.edge_order = edge_order

        # Create a text rendering of the QueryGraph geometry for matching against a template
        self.query_graph_templates = {
            'simple': '',
            'detailed': {
                'n_nodes': len(node_order),
                'components': []
            }
        }
        node_index = 0
        edge_index = 0
        #print(json.dumps(ast.literal_eval(repr(node_order)),sort_keys=True,indent=2))
        for node in node_order:
            component_id = f"n{node_index:02}"
            content = ''
            component = {
                'component_type': 'node',
                'component_id': component_id,
                'has_id': node['has_id'],
                'has_category': node['has_category'],
                'category_value': None
            }
            self.query_graph_templates['detailed']['components'].append(
                component)
            if node['has_id']:
                content = 'id'
            elif node['has_category'] and node[
                    'node_object'].category is not None:
                content = f"category={node['node_object'].category}"
                component['category_value'] = node['node_object'].category
            elif node['has_category']:
                content = 'category'
            template_part = f"{component_id}({content})"
            self.query_graph_templates['simple'] += template_part

            # Since queries with intermediate nodes that are not is_set=true tend to blow up, for now, make them is_set=true unless explicitly set to false
            if node_index > 0 and node_index < (self.n_nodes - 1):
                if 'is_set' not in node or node['is_set'] is None:
                    node['node_object'].is_set = True
                    response.warning(
                        f"Setting unspecified is_set to true for {node['key']} because this will probably lead to a happier result"
                    )
                elif node['is_set'] is True:
                    response.debug(
                        f"Value for is_set is already true for {node['key']} so that's good"
                    )
                elif node['is_set'] is False:
                    #response.info(f"Value for is_set is set to false for intermediate node {node['key']}. This could lead to weird results. Consider setting it to true")
                    response.info(
                        f"Value for is_set is false for intermediate node {node['key']}. Setting to true because this will probably lead to a happier result"
                    )
                    node['node_object'].is_set = True
                #else:
                #    response.error(f"Unrecognized value is_set='{node['is_set']}' for {node['key']}. This should be true or false")

            node_index += 1
            if node_index < self.n_nodes:
                #print(json.dumps(ast.literal_eval(repr(node)),sort_keys=True,indent=2))

                #### Extract the has_predicate and predicate_value from the edges of the node
                #### This could fail if there are two edges coming out of the node FIXME
                has_predicate = False
                predicate_value = None
                if 'edges' in node:
                    for related_edge in node['edges']:
                        if related_edge['subject'] == node['key']:
                            has_predicate = related_edge['has_predicate']
                            if has_predicate is True and 'predicate' in related_edge:
                                predicate_value = related_edge['predicate']

                component_id = f"e{edge_index:02}"
                template_part = f"-{component_id}()-"
                self.query_graph_templates['simple'] += template_part
                component = {
                    'component_type': 'edge',
                    'component_id': component_id,
                    'has_id': False,
                    'has_predicate': has_predicate,
                    'predicate_value': predicate_value
                }
                self.query_graph_templates['detailed']['components'].append(
                    component)
                edge_index += 1

        response.debug(
            f"The QueryGraph reference template is: {self.query_graph_templates['simple']}"
        )

        #tmp = { 'node_info': node_info, 'edge_info': edge_info, 'start_node': start_node, 'n_nodes': self.n_nodes, 'n_edges': self.n_edges,
        #    'is_bifurcated_graph': self.is_bifurcated_graph, 'node_order': node_order, 'edge_order': edge_order }
        #print(json.dumps(ast.literal_eval(repr(tmp)),sort_keys=True,indent=2))
        #sys.exit(0)

        #### Return the response
        return response
Example #18
0
    def _answer_query_using_CHP_client(
            self, query_graph: QueryGraph,
            log: ARAXResponse) -> QGOrganizedKnowledgeGraph:
        qedge_key = next(qedge_key for qedge_key in query_graph.edges)
        log.debug(
            f"Processing query results for edge {qedge_key} by using CHP client"
        )
        final_kg = QGOrganizedKnowledgeGraph()
        gene_label_list = ['gene']
        drug_label_list = ['drug', 'chemicalsubstance']
        # use for checking the requirement
        source_pass_nodes = None
        source_category = None
        target_pass_nodes = None
        target_category = None

        qedge = query_graph.edges[qedge_key]
        source_qnode_key = qedge.subject
        target_qnode_key = qedge.object
        source_qnode = query_graph.nodes[source_qnode_key]
        target_qnode = query_graph.nodes[target_qnode_key]

        # check if both ends of edge have no curie
        if (source_qnode.id is None) and (target_qnode.id is None):
            log.error(f"Both ends of edge {qedge_key} are None",
                      error_code="BadEdge")
            return final_kg

        # check if the query nodes are drug or disease
        if source_qnode.id is not None:

            if type(source_qnode.id) is str:
                source_pass_nodes = [source_qnode.id]
            else:
                source_pass_nodes = source_qnode.id
            has_error, pass_nodes, not_pass_nodes = self._check_id(
                source_qnode.id, log)
            if has_error:
                return final_kg
            else:
                if len(not_pass_nodes) == 0 and len(pass_nodes) != 0:
                    source_pass_nodes = pass_nodes
                elif len(not_pass_nodes) != 0 and len(pass_nodes) != 0:
                    source_pass_nodes = pass_nodes
                    if len(not_pass_nodes) == 1:
                        log.warning(
                            f"The curie id of {not_pass_nodes[0]} is not allowable based on CHP client"
                        )
                    else:
                        log.warning(
                            f"The curie ids of these nodes {not_pass_nodes} are not allowable based on CHP client"
                        )
                else:
                    if type(source_qnode.id) is str:
                        log.error(
                            f"The curie id of {source_qnode.id} is not allowable based on CHP client",
                            error_code="NotAllowable")
                        return final_kg
                    else:
                        log.error(
                            f"The curie ids of {source_qnode.id} are not allowable based on CHP client",
                            error_code="NotAllowable")
                        return final_kg
        else:
            category = source_qnode.category[0].replace(
                'biolink:', '').replace('_', '').lower()
            source_category = category
            if (category in drug_label_list) or (category in gene_label_list):
                source_category = category
            else:
                log.error(
                    f"The category of query node {source_qnode_key} is unsatisfiable. It has to be drug/chemical_substance or gene",
                    error_code="CategoryError")
                return final_kg

        if target_qnode.id is not None:

            if type(target_qnode.id) is str:
                target_pass_nodes = [target_qnode.id]
            else:
                target_pass_nodes = target_qnode.id
            has_error, pass_nodes, not_pass_nodes = self._check_id(
                target_qnode.id, log)
            if has_error:
                return final_kg
            else:
                if len(not_pass_nodes) == 0 and len(pass_nodes) != 0:
                    target_pass_nodes = pass_nodes
                elif len(not_pass_nodes) != 0 and len(pass_nodes) != 0:
                    target_pass_nodes = pass_nodes
                    if len(not_pass_nodes) == 1:
                        log.warning(
                            f"The curie id of {not_pass_nodes[0]} is not allowable based on CHP client"
                        )
                    else:
                        log.warning(
                            f"The curie ids of these nodes {not_pass_nodes} are not allowable based on CHP client"
                        )
                else:
                    if type(target_qnode.id) is str:
                        log.error(
                            f"The curie id of {target_qnode.id} is not allowable based on CHP client",
                            error_code="CategoryError")
                        return final_kg
                    else:
                        log.error(
                            f"The curie ids of {target_qnode.id} are not allowable based on CHP client",
                            error_code="CategoryError")
                        return final_kg
        else:
            category = target_qnode.category[0].replace(
                'biolink:', '').replace('_', '').lower()
            target_category = category
            if (category in drug_label_list) or (category in gene_label_list):
                target_category = category
            else:
                log.error(
                    f"The category of query node {target_qnode_key} is unsatisfiable. It has to be drug/chemical_substance or gene",
                    error_code="CategoryError")
                return final_kg

        if (source_pass_nodes is None) and (target_pass_nodes is None):
            return final_kg

        elif (source_pass_nodes is not None) and (target_pass_nodes
                                                  is not None):
            source_dict = dict()
            target_dict = dict()
            if source_pass_nodes[0] in self.allowable_drug_curies:
                source_category_temp = 'drug'
            else:
                source_category_temp = 'gene'
            if target_pass_nodes[0] in self.allowable_drug_curies:
                target_category_temp = 'drug'
            else:
                target_category_temp = 'gene'
            if source_category_temp == target_category_temp:
                log.error(
                    f"The query nodes in both ends of edge are the same type which is {source_category_temp}",
                    error_code="CategoryError")
                return final_kg
            else:
                for (source_curie, target_curie) in itertools.product(
                        source_pass_nodes, target_pass_nodes):

                    if source_category_temp == 'drug':
                        source_curie_temp = source_curie.replace(
                            'CHEMBL.COMPOUND:', 'CHEMBL:')
                        # Let's build a simple single query
                        q = build_query(genes=[target_curie],
                                        therapeutic=source_curie_temp,
                                        disease='MONDO:0007254',
                                        outcome=('EFO:0000714', '>=',
                                                 self.CHP_survival_threshold))

                        response = self.client.query(q)
                        max_probability = self.client.get_outcome_prob(
                            response)
                        swagger_edge_key, swagger_edge = self._convert_to_swagger_edge(
                            target_curie, source_curie, "paired_with",
                            max_probability)
                    else:
                        target_curie_temp = target_curie.replace(
                            'CHEMBL.COMPOUND:', 'CHEMBL:')
                        # Let's build a simple single query
                        q = build_query(genes=[source_curie],
                                        therapeutic=target_curie_temp,
                                        disease='MONDO:0007254',
                                        outcome=('EFO:0000714', '>=',
                                                 self.CHP_survival_threshold))

                        response = self.client.query(q)
                        max_probability = self.client.get_outcome_prob(
                            response)
                        swagger_edge_key, swagger_edge = self._convert_to_swagger_edge(
                            source_curie, target_curie, "paired_with",
                            max_probability)

                    source_dict[source_curie] = source_qnode_key
                    target_dict[target_curie] = target_qnode_key

                    # Finally add the current edge to our answer knowledge graph
                    final_kg.add_edge(swagger_edge_key, swagger_edge,
                                      qedge_key)

                # Add the nodes to our answer knowledge graph
                if len(source_dict) != 0:
                    for source_curie in source_dict:
                        swagger_node_key, swagger_node = self._convert_to_swagger_node(
                            source_curie)
                        final_kg.add_node(swagger_node_key, swagger_node,
                                          source_dict[source_curie])
                if len(target_dict) != 0:
                    for target_curie in target_dict:
                        swagger_node_key, swagger_node = self._convert_to_swagger_node(
                            target_curie)
                        final_kg.add_node(swagger_node_key, swagger_node,
                                          target_dict[target_curie])

                return final_kg

        elif source_pass_nodes is not None:
            source_dict = dict()
            target_dict = dict()

            if source_pass_nodes[0] in self.allowable_drug_curies:
                source_category_temp = 'drug'
            else:
                source_category_temp = 'gene'
            if target_category in drug_label_list:
                target_category_temp = 'drug'
            else:
                target_category_temp = 'gene'
            if source_category_temp == target_category_temp:
                log.error(
                    f"The query nodes in both ends of edge are the same type which is {source_category_temp}",
                    error_code="CategoryError")
                return final_kg
            else:
                if source_category_temp == 'drug':
                    for source_curie in source_pass_nodes:

                        genes = [
                            curie for curie in self.allowable_gene_curies
                            if self.synonymizer.get_canonical_curies(curie)
                            [curie] is not None and target_category in [
                                category.replace('biolink:', '').replace(
                                    '_', '').lower() for category in list(
                                        self.synonymizer.get_canonical_curies(
                                            curie, return_all_categories=True)
                                        [curie]['all_categories'].keys())
                            ]
                        ]
                        therapeutic = source_curie.replace(
                            'CHEMBL.COMPOUND:', 'CHEMBL:')
                        disease = 'MONDO:0007254'
                        outcome = ('EFO:0000714', '>=',
                                   self.CHP_survival_threshold)

                        queries = []
                        for gene in genes:
                            queries.append(
                                build_query(
                                    genes=[gene],
                                    therapeutic=therapeutic,
                                    disease=disease,
                                    outcome=outcome,
                                ))

                        # use the query_all endpoint to run the batch of queries
                        res = self.client.query_all(queries)

                        for result, gene in zip(res["message"], genes):
                            prob = self.client.get_outcome_prob(result)
                            swagger_edge_key, swagger_edge = self._convert_to_swagger_edge(
                                gene, source_curie, "paired_with", prob)

                            source_dict[source_curie] = source_qnode_key
                            target_dict[gene] = target_qnode_key

                            # Finally add the current edge to our answer knowledge graph
                            final_kg.add_edge(swagger_edge_key, swagger_edge,
                                              qedge_key)
                else:
                    for source_curie in source_pass_nodes:

                        genes = [source_curie]
                        therapeutic = [
                            curie.replace('CHEMBL.COMPOUND:', 'CHEMBL:')
                            for curie in self.allowable_drug_curies
                            if self.synonymizer.get_canonical_curies(
                                curie.replace('CHEMBL:', 'CHEMBL.COMPOUND:'))
                            [curie.replace('CHEMBL:', 'CHEMBL.COMPOUND:')]
                            is not None and target_category in [
                                category.replace('biolink:', '').replace(
                                    '_', '').lower()
                                for category in list(
                                    self.synonymizer.get_canonical_curies(
                                        curie.replace('CHEMBL:',
                                                      'CHEMBL.COMPOUND:'),
                                        return_all_categories=True)[
                                            curie.replace(
                                                'CHEMBL:', 'CHEMBL.COMPOUND:')]
                                    ['all_categories'].keys())
                            ]
                        ]
                        disease = 'MONDO:0007254'
                        outcome = ('EFO:0000714', '>=',
                                   self.CHP_survival_threshold)

                        queries = []
                        for drug in therapeutic:
                            queries.append(
                                build_query(
                                    genes=genes,
                                    therapeutic=drug,
                                    disease=disease,
                                    outcome=outcome,
                                ))

                        # use the query_all endpoint to run the batch of queries
                        res = self.client.query_all(queries)

                        for result, drug in zip(res["message"], therapeutic):
                            drug = drug.replace('CHEMBL:', 'CHEMBL.COMPOUND:')
                            prob = self.client.get_outcome_prob(result)
                            swagger_edge_key, swagger_edge = self._convert_to_swagger_edge(
                                source_curie, drug, "paired_with", prob)

                            source_dict[source_curie] = source_qnode_key
                            target_dict[drug] = target_qnode_key

                            # Finally add the current edge to our answer knowledge graph
                            final_kg.add_edge(swagger_edge_key, swagger_edge,
                                              qedge_key)

                # Add the nodes to our answer knowledge graph
                if len(source_dict) != 0:
                    for source_curie in source_dict:
                        swagger_node_key, swagger_node = self._convert_to_swagger_node(
                            source_curie)
                        final_kg.add_node(swagger_node_key, swagger_node,
                                          source_dict[source_curie])
                if len(target_dict) != 0:
                    for target_curie in target_dict:
                        swagger_node_key, swagger_node = self._convert_to_swagger_node(
                            target_curie)
                        final_kg.add_node(swagger_node_key, swagger_node,
                                          target_dict[target_curie])

                return final_kg
        else:
            source_dict = dict()
            target_dict = dict()

            if target_pass_nodes[0] in self.allowable_drug_curies:
                target_category_temp = 'drug'
            else:
                target_category_temp = 'gene'
            if source_category in drug_label_list:
                source_category_temp = 'drug'
            else:
                source_category_temp = 'gene'
            if source_category_temp == target_category_temp:
                log.error(
                    f"The query nodes in both ends of edge are the same type which is {source_category_temp}",
                    error_code="CategoryError")
                return final_kg
            else:
                if target_category_temp == 'drug':
                    for target_curie in target_pass_nodes:

                        genes = [
                            curie for curie in self.allowable_gene_curies
                            if self.synonymizer.get_canonical_curies(curie)
                            [curie] is not None and source_category in [
                                category.replace('biolink:', '').replace(
                                    '_', '').lower() for category in list(
                                        self.synonymizer.get_canonical_curies(
                                            curie, return_all_categories=True)
                                        [curie]['all_categories'].keys())
                            ]
                        ]
                        therapeutic = target_curie.replace(
                            'CHEMBL.COMPOUND:', 'CHEMBL:')
                        disease = 'MONDO:0007254'
                        outcome = ('EFO:0000714', '>=',
                                   self.CHP_survival_threshold)

                        queries = []
                        for gene in genes:
                            queries.append(
                                build_query(
                                    genes=[gene],
                                    therapeutic=therapeutic,
                                    disease=disease,
                                    outcome=outcome,
                                ))

                        # use the query_all endpoint to run the batch of queries
                        res = self.client.query_all(queries)

                        for result, gene in zip(res["message"], genes):
                            prob = self.client.get_outcome_prob(result)
                            swagger_edge_key, swagger_edge = self._convert_to_swagger_edge(
                                gene, target_curie, "paired_with", prob)

                            source_dict[gene] = source_qnode_key
                            target_dict[target_curie] = target_qnode_key

                            # Finally add the current edge to our answer knowledge graph
                            final_kg.add_edge(swagger_edge_key, swagger_edge,
                                              qedge_key)

                else:
                    for target_curie in target_pass_nodes:

                        genes = [target_curie]
                        therapeutic = [
                            curie.replace('CHEMBL.COMPOUND:', 'CHEMBL:')
                            for curie in self.allowable_drug_curies
                            if self.synonymizer.get_canonical_curies(
                                curie.replace('CHEMBL:', 'CHEMBL.COMPOUND:'))
                            [curie.replace('CHEMBL:', 'CHEMBL.COMPOUND:')]
                            is not None and source_category in [
                                category.replace('biolink:', '').replace(
                                    '_', '').lower()
                                for category in list(
                                    self.synonymizer.get_canonical_curies(
                                        curie.replace('CHEMBL:',
                                                      'CHEMBL.COMPOUND:'),
                                        return_all_categories=True)[
                                            curie.replace(
                                                'CHEMBL:', 'CHEMBL.COMPOUND:')]
                                    ['all_categories'].keys())
                            ]
                        ]
                        disease = 'MONDO:0007254'
                        outcome = ('EFO:0000714', '>=',
                                   self.CHP_survival_threshold)

                        queries = []
                        for drug in therapeutic:
                            queries.append(
                                build_query(
                                    genes=genes,
                                    therapeutic=drug,
                                    disease=disease,
                                    outcome=outcome,
                                ))

                        # use the query_all endpoint to run the batch of queries
                        res = self.client.query_all(queries)

                        for result, drug in zip(res["message"], therapeutic):
                            drug = drug.replace('CHEMBL:', 'CHEMBL.COMPOUND:')
                            prob = self.client.get_outcome_prob(result)
                            swagger_edge_key, swagger_edge = self._convert_to_swagger_edge(
                                target_curie, drug, "paired_with", prob)

                            source_dict[drug] = source_qnode_key
                            target_dict[target_curie] = target_qnode_key

                            # Finally add the current edge to our answer knowledge graph
                            final_kg.add_edge(swagger_edge_key, swagger_edge,
                                              qedge_key)

                # Add the nodes to our answer knowledge graph
                if len(source_dict) != 0:
                    for source_curie in source_dict:
                        swagger_node_key, swagger_node = self._convert_to_swagger_node(
                            source_curie)
                        final_kg.add_node(swagger_node_key, swagger_node,
                                          source_dict[source_curie])
                if len(target_dict) != 0:
                    for target_curie in target_dict:
                        swagger_node_key, swagger_node = self._convert_to_swagger_node(
                            target_curie)
                        final_kg.add_node(swagger_node_key, swagger_node,
                                          target_dict[target_curie])

                return final_kg