def __init__( self, modelClass ): Adaptor.__init__( self ) SqlAlchemyAdaptor._adaptors[modelClass] = self table = modelClass.__table__ self.setTypeName( modelClass.__name__) primary=[] for c in table.columns: if c.primary_key: primary.append(c.name) try: self.addAttribute(c.name, c.type.python_type, editable=not c.primary_key) # For Geometry type, which doesn't implement python_type yet. except NotImplementedError: pass if len(primary) == 1: self.setIdAttribute( primary[0] ) for relname in dir(modelClass): if relname.startswith("_"): continue rel= type(modelClass).__getattribute__(modelClass,relname) if 'property' not in dir(rel): continue prop = rel.property if not isinstance(prop,RelationshipProperty): continue adaptor = SqlAlchemyAdaptor.getAdaptor(prop.mapper.class_) islist = prop.uselist self.addAttribute( relname, adaptor, editable=True, islist=islist )
kernel_type = config.get('kernel_type', '') cost = config.get('cost', 1) degree = config.get('degree', 3) coef0 = config.get('coef0', 0) sparse_matrix = config.get('sparse_matrix', False) threshold = config.get('threshold', 50) y_train, x_train = svm_read_problem(train_data_path) y_test, x_test = svm_read_problem(test_data_path) data_size_train = len(y_train) data_size_test = len(y_test) features_num = extract_features_from_data(x_train, x_test) gamma = config.get('gamma', 1 / features_num) adaptor_train = Adaptor(y=y_train, x=x_train, data_size=data_size_train, features_num=features_num) adaptor_test = Adaptor(y=y_test, x=x_test, data_size=data_size_test, features_num=features_num) npx_train = adaptor_train.adapt_x() npy_train = adaptor_train.adapt_y() npx_test = adaptor_test.adapt_x() npy_test = adaptor_test.adapt_y() lower_boundary = np.zeros((npy_train.shape[0], npy_train.shape[1])) upper_boundary = np.ones((npy_train.shape[0], npy_train.shape[1])) * cost q = np.ones((npy_train.shape[0], npy_train.shape[1])) check_generation_memory(data_size_train, features_num, sparse_matrix)
def test_add_listener(self): adaptor = Adaptor(1) room = Room() adaptor.add_listener(room) self.assertEqual(len(adaptor.get_listeners()),1)
def test_start_reading(self): adaptor = Adaptor(1) adaptor.start_reading()
def test_add_listener(self): adaptor = Adaptor(1) room = Room() adaptor.add_listener(room) self.assertEqual(len(adaptor.get_listeners()), 1)