Example #1
0
    def factory(type, parameters, mass):

        if type == "random":
            return Random_thinning_algorithm.Random_thinning_algorithm(
                parameters.reduction_percent)
        if type == "number_conservative":
            return Number_conservative_thinning_algorithm.Number_conservative_thinning_algorithm(
                parameters.reduction_percent)
        if type == "energy_conservative":
            return Energy_conservative_thinning_algorithm.Energy_conservative_thinning_algorithm(
                parameters.reduction_percent, mass)
        if type == "kmeans":
            divisions = [16, 40]
            return k_means_clustering_algorithm.K_means_clustering_algorithm(
                parameters.reduction_percent, parameters.max_iterations,
                parameters.tolerance, divisions)
        if type == "kmeans_avg":
            divisions = [32, 60]
            return k_means_merge_average_algorithm.K_means_merge_average_algorithm(
                parameters.reduction_percent, parameters.max_iterations,
                parameters.tolerance, divisions)
        if type == "voronoi":
            return Voronoi_algorithm.VoronoiMergingAlgorithm(
                parameters.tolerance)
        if type == "voronoi_prob":
            voronoi_parameters = Voronoi_probabilistic_algorithm.Voronoi_probabilistic_algorithm_parameters\
                (parameters.reduction_percent, parameters.ratio_left_particles)
            return Voronoi_probabilistic_algorithm.Voronoi_probabilistic_algorithm(
                voronoi_parameters)
        if type == "leveling":
            return Leveling_thinning_algorithm.Leveling_thinning_algorithm(
                parameters.leveling_coefficient)

        if type == "vranic": pass
        assert 0, "Bad type_algoritm: " + type
Example #2
0
def random_thinning_algorithm(hdf_file_name, hdf_file_reduction_name,
                              reduction_percent):

    parameters = Random_thinning_algorithm.Random_thinning_algorithm_parameters(
        reduction_percent)
    base_reduction_function(hdf_file_name, hdf_file_reduction_name, "random",
                            parameters)
Example #3
0
    parser.add_argument("-leveling_coefficient", metavar='leveling_coefficient', type=float,
                        help="leveling_coefficient")

    parser.add_argument("-k_means_subdivision", metavar='leveling_coefficient', type=list,
                        help="leveling_coefficient")

    args = parser.parse_args()

    if args.algorithm == 'voronoi':
        tolerance = [args.momentum_tol, args.momentum_pos]
        parameters = Voronoi_algorithm.VoronoiMergingAlgorithmParameters(tolerance)
        base_reduction_function(args.hdf, args.hdf_re, "voronoi", parameters)

    elif args.algorithm == 'random':
        parameters = Random_thinning_algorithm.Random_thinning_algorithm_parameters(args.reduction_percent)
        base_reduction_function(args.hdf, args.hdf_re, "random", parameters)

    elif args.algorithm == 'number_conservative':
        parameters = Number_conservative_thinning_algorithm.Number_conservative_thinning_algorithm_parameters(args.reduction_percent)
        base_reduction_function(args.hdf, args.hdf_re, "number_conservative", parameters)

    elif args.algorithm == 'energy_conservative':
        parameters = Energy_conservative_thinning_algorithm.Energy_conservative_thinning_algorithm_parameters(args.reduction_percent)
        base_reduction_function(args.hdf, args.hdf_re, "energy_conservative", parameters)

    elif args.algorithm == 'kmeans':
        parameters = k_means_clustering_algorithm.K_means_clustering_algorithm_parameters(args.reduction_percent)
        base_reduction_function(args.hdf, args.hdf_re, "kmeans", parameters)

    elif args.algorithm == 'kmeans_avg':

    args = parser.parse_args()

    if args.algorithm == 'voronoi':
        tolerance = [args.momentum_tol, args.position_lol]
        parameters = Voronoi_algorithm.VoronoiMergingAlgorithmParameters(tolerance)
        voronoi_algorithm(args.hdf, args.hdf_re, args.momentum_tol, args.position_lol, args.iteration)

    elif args.algorithm == 'voronoi_prob':
        divide_particles = 20
        parameters = Voronoi_probabilistic_algorithm.Voronoi_probabilistic_algorithm_parameters(1. - args.ratio_deleted_particles, divide_particles)
        base_reduction_function(args.hdf, args.hdf_re, "voronoi_prob", parameters, args.iteration)

    elif args.algorithm == 'random':
        parameters = Random_thinning_algorithm.Random_thinning_algorithm_parameters(args.ratio_deleted_particles)
        base_reduction_function(args.hdf, args.hdf_re, "random", parameters, args.iteration)

    elif args.algorithm == 'number_conservative':
        parameters = Number_conservative_thinning_algorithm.Number_conservative_thinning_algorithm_parameters(args.ratio_deleted_particles)
        base_reduction_function(args.hdf, args.hdf_re, "number_conservative", parameters, args.iteration)

    elif args.algorithm == 'energy_conservative':
        parameters = Energy_conservative_thinning_algorithm.Energy_conservative_thinning_algorithm_parameters(args.ratio_deleted_particles)
        base_reduction_function(args.hdf, args.hdf_re, "energy_conservative", parameters, args.iteration)

    elif args.algorithm == 'kmeans':
        parameters = k_means_clustering_algorithm.K_means_clustering_algorithm_parameters(args.ratio_deleted_particles)
        base_reduction_function(args.hdf, args.hdf_re, "kmeans", parameters, args.iteration)

    elif args.algorithm == 'kmeans_avg':