Example #1
0
def compose_polar_faces(faces, overlap, num_cores=None):
    nside = faces[0].shape[0]

    assert faces[0].shape[1] == nside
    assert overlap <= nside // 4

    # FIXME: If this is changed, change the constructor of PW_Transform!
    nside_output = 2 * (3 * nside // 4 + overlap)

    cut = nside // 4 - overlap
    size = nside - cut

    # north = np.ones((4, size, size))
    north = sm.empty((4, size, size))

    # north[0] = np.rot90(faces[1][:size, cut:], -1)
    # north[1] = np.rot90(faces[2][:size, cut:], -2)
    # north[2] = np.rot90(faces[0][:size, cut:], 0)
    # north[3] = np.rot90(faces[3][:size, cut:], -3)

    first_index = (1, 2, 0, 3)
    second_index = (-1, -2, 0, -3)

    with sharedmem_pool(num_cores, numexpr=False) as pool:

        def work(i):
            north[i] = np.rot90(faces[first_index[i]][:size, cut:],
                                second_index[i])

        pool.map(work, range(4))

    output = np.ones((2, nside_output, nside_output))

    output[0] = np.vstack((np.hstack(
        (north[0], north[1])), np.hstack((north[2], north[3]))))
    del north

    # south = np.ones((4, size, size))
    south = sm.empty((4, size, size))

    first_index = (9, 8, 10, 11)
    second_index = (1, 0, 2, 3)

    # south[0] = np.rot90(faces[9][cut:, :size], 1)
    # south[1] = np.rot90(faces[8][cut:, :size], 0)
    # south[2] = np.rot90(faces[10][cut:, :size], 2)
    # south[3] = np.rot90(faces[11][cut:, :size], 3)

    with sharedmem_pool(num_cores, numexpr=False) as pool:

        def work(i):
            south[i] = np.rot90(faces[first_index[i]][cut:, :size],
                                second_index[i])

        pool.map(work, range(4))

    output[1] = np.vstack((np.hstack(
        (south[0], south[1])), np.hstack((south[2], south[3]))))

    return output
    def inv_thresh_scales(self, coeffs, noise_sigma=None, multipliers=None):
        #INV THRESHOLD THE SCALES FOR A FACE
        if noise_sigma is None:
            print('ABORT: a sigma value must be specified')
            return hp_im
        assert noise_sigma >= 0.0

        if multipliers is None:
            multipliers = [3] * trafo.num_scales + [4]
        width = self.__trafo.width
        height = self.__trafo.height
        indices = self.__trafo.indices
        for kl, ksc in enumerate(indices):
            if (kl == 0):
                scales = [0]
            else:
                scales.append(ksc[0] + 1)
        thresh_lvls = [noise_sigma * multipliers[sc] for sc in scales]
        thresh_coeff = sm.empty_like(coeffs, dtype=DTYPES[1])
        with sharedmem_pool(self.__num_cores) as pool:

            def work(i):
                coeff = coeffs[i]
                thresh = thresh_lvls[i]
                ne.evaluate('coeff*(real(abs(coeff))>=thresh)',
                            out=thresh_coeff[i])

            pool.map(work, range(len(indices)))

        thresh_coeff = np.array(thresh_coeff)
        recon = self.__trafo.inverse_transform(thresh_coeff,
                                               real=True,
                                               do_norm=True)
        return recon
Example #3
0
def get_faces_par(im, nested=False, num_cores=None):
    npix = np.shape(im)[0]
    assert npix % 12 == 0

    nside = npix2nside(npix)

    if not nested:
        new_im = reorder(im, r2n=True)
    else:
        new_im = im

    # index = np.array([xyf2pix(nside, x, range(nside), 0, True)
    #                     for x in range(nside-1, -1, -1)])
    index = make_index_par(nside, num_cores)

    CubeFace = sm.empty((12, nside, nside))
    with sharedmem_pool(num_cores, numexpr=False) as pool:
        # for face in range(12):
        #     CubeFace[face] = np.resize(new_im[index + nside**2 * face],
        #                                (nside, nside))
        def work(i):
            CubeFace[i] = np.resize(new_im[index + nside**2 * i],
                                    (nside, nside))

        pool.map(work, range(12))

    return np.array(CubeFace)
Example #4
0
def make_index_par(nside, num_cores=None):
    # original sequential code:
    # index = np.array([xyf2pix(nside, x, range(nside), 0, True)
    #                   for x in range(nside-1, -1, -1)])

    index = sm.empty((nside, nside), dtype='int64')
    y = np.arange(nside)

    with sharedmem_pool(num_cores, numexpr=False) as pool:
        # we want to divide range(nside) into N chunks of (almost) equal size
        real_core_num = pool.np
        N = 10 * real_core_num  # this can be changed if desired!
        chunk_size = 1 + nside // N  # NOTE: N * chunk_size >= nside

        def work(i):
            lower = (N - (i + 1)) * chunk_size
            upper = (N - i) * chunk_size
            if lower < nside:
                index[lower:upper] = [
                    xyf2pix(nside, x, y, 0, True)
                    for x in range(lower, min(nside, upper))
                ]

        pool.map(work, range(N - 1, -1, -1))

    return np.array(index[::-1])
Example #5
0
def set_faces_par(CubeFace, nested=False, num_cores=None):
    npix = np.size(CubeFace)
    assert npix % 12 == 0

    nside = npix2nside(npix)

    index = make_index_par(nside, num_cores)
    # index = np.array([xyf2pix(nside, x, range(nside), 0, True)
    #                     for x in range(nside-1, -1, -1)])

    imag = sm.empty((npix))
    with sharedmem_pool(num_cores, numexpr=False) as pool:

        def work(i):
            for face in range(12):
                imag[index + nside**2 * face] = np.resize(
                    CubeFace[face], (nside, nside))

        #imag[index + nside**2 * face] = np.resize(CubeFace[face],
        #                                          (nside,nside))

        pool.map(work, range(12))

    imag = np.array(imag)

    if not nested:
        new_im = reorder(imag, n2r=True)
    else:
        new_im = imag

    return new_im
Example #6
0
def _blend_masks_par(nside, size, num_cores=None):
    def _cos(x):
        # return -0.5 * np.cos(np.pi*x) + 0.5
        pi = np.pi
        return ne.evaluate('-0.5 * cos(pi * x) + 0.5')

    x, y = np.meshgrid(
        np.linspace(1, nside, nside),
        np.hstack([
            np.zeros(3 * nside // 4 - size),
            np.linspace(0, 1, size),
            np.ones(nside // 4)
        ]))

    blend_masks = sm.empty((8, nside, nside))

    blend_masks[0] = _cos(y)
    # blend_masks[1] = np.rot90(blend_masks[0], -1)
    # blend_masks[2] = np.rot90(blend_masks[0], -2)
    # blend_masks[3] = np.rot90(blend_masks[0], -3)
    with sharedmem_pool(num_cores, numexpr=False) as pool:

        def work(i):
            blend_masks[i] = np.rot90(blend_masks[0], -i)

        pool.map(work, range(1, 4))

    # blend_masks[4] = blend_masks[0] * blend_masks[3]
    # blend_masks[5] = blend_masks[1] * blend_masks[2]
    # blend_masks[6] = (1 - blend_masks[0]) * (1 - blend_masks[1])
    # blend_masks[7] = (1 - blend_masks[2]) * (1 - blend_masks[3])
    first_index = (0, 1, 0, 2)
    second_index = (3, 2, 1, 3)
    with sharedmem_pool(num_cores) as pool:

        def work(i):
            if i in {4, 5}:
                blend_masks[i] = (blend_masks[first_index[i - 4]] *
                                  blend_masks[second_index[i - 4]])
            elif i in {6, 7}:
                blend_masks[i] = ((1 - blend_masks[first_index[i - 4]]) *
                                  (1 - blend_masks[second_index[i - 4]]))

        pool.map(work, range(4, 8))

    return np.array(blend_masks)
Example #7
0
def compose_equatorial_faces(faces, overlap, num_cores=None):
    nside = faces[0].shape[0]

    assert faces[0].shape[1] == nside
    assert overlap <= 3 * nside // 4

    extra = nside // 4 + overlap
    nside_output = nside + 2 * extra
    masks = _face_masks(extra, num_cores)

    output = sm.empty((4, nside_output, nside_output))

    with sharedmem_pool(num_cores, numexpr=False) as pool:

        def work(i):
            rows = []
            temp = []

            temp.append(faces[4 + (i + 1) % 4][-extra:, -extra:])
            temp.append(faces[i][-extra:, :])
            temp.append(
                (masks[0] * np.rot90(faces[i][-extra:, -extra:], -1) +
                 masks[1] * np.rot90(faces[(i + 3) % 4][:extra, :extra], 1)) /
                (masks[0] + masks[1]))

            rows.append(np.hstack(temp))

            temp = []

            temp.append(faces[8 + i][:, -extra:])
            temp.append(faces[4 + i])
            temp.append(faces[(i + 3) % 4][:, :extra])

            rows.append(np.hstack(temp))

            temp = []

            temp.append(
                (masks[2] * np.rot90(faces[8 +
                                           (i + 3) % 4][:extra, :extra], -1) +
                 masks[3] * np.rot90(faces[8 + i][-extra:, -extra:], 1)) /
                (masks[2] + masks[3]))

            temp.append(faces[8 + (i + 3) % 4][:extra, :])
            temp.append(faces[4 + (i + 3) % 4][:extra, :extra])

            rows.append(np.hstack(temp))

            output[i] = np.vstack(rows)

        pool.map(work, range(4))

    return np.array(output)
Example #8
0
    def max_coeff(self, hp_im, do_norm=True):
        maxima = [0 for j in range(6)]

        for j, face in enumerate(self._face_generator(hp_im)):
            face_fourier = self.__trafo.do_fourier(face)

            numexpr_flag = NUM_FFTW_THREADS != 1
            with sharedmem_pool(self.__num_cores,
                                numexpr=numexpr_flag) as pool:

                def work(i):
                    coeff = self.__trafo.transform_fourier(face_fourier,
                                                           i,
                                                           do_norm=do_norm)
                    return np.max(np.abs(coeff))

                maxima[j] = np.max(
                    pool.map(work, range(self.__trafo.redundancy)))

        return np.max(maxima)
Example #9
0
def _face_masks(size, num_cores=None):
    def _cos_step(x, size):
        pi = np.pi
        return ne.evaluate('(0 <= x) * (-0.5 * cos(pi*x/size) + 0.5)'
                           '* (x < size) + (x >= size)')
        # return ((0 <= x) * (-0.5 * np.cos(np.pi*x/size) + 0.5) * (x < size)
        #         + (x >= size))

    # masks = np.zeros((4, size, size))
    masks = sm.empty((4, size, size))

    # one of the values is shifted to avoid for the sum of two masks to vanish
    x, y = np.meshgrid(np.linspace(0, size - 1, size),
                       np.linspace(1, size, size))

    # masks[0] = np.rot90(_cos_step(size-x, size) * _cos_step(2*y-x, size), 1)
    # masks[1] = np.rot90(_cos_step(size-y+1, size) * _cos_step(2*x-y+2, size), 1)
    # masks[2] = np.rot90(masks[0], 2)
    # masks[3] = np.rot90(masks[1], 2)

    with sharedmem_pool(num_cores, numexpr=True) as pool:

        def work(i):
            if i == 0:
                masks[0] = np.rot90(
                    _cos_step(size - x, size) * _cos_step(2 * y - x, size), 1)
                masks[2] = np.rot90(masks[0], 2)
            else:
                masks[1] = np.rot90(
                    _cos_step(size - y + 1, size) *
                    _cos_step(2 * x - y + 2, size), 1)
                masks[3] = np.rot90(masks[1], 2)

        pool.map(work, range(2))

    return np.array(masks)
Example #10
0
def reassemble_faces_par(nside,
                         polar_faces,
                         eq_faces,
                         margin,
                         transition,
                         num_cores=None):
    out = sm.empty((12, nside, nside))

    blend_masks = _blend_masks_par(nside, transition, num_cores)

    offset = 3 * nside // 4 + transition + margin
    size = offset - margin

    with sharedmem_pool(num_cores, numexpr=False) as pool:

        def work(i):
            if i <= 3:
                ### north polar faces
                out[i][:size, -size:] = np.rot90(polar_faces[0],
                                                 i)[offset:-margin,
                                                    margin:offset]
                out[i] *= blend_masks[6]
            else:
                ### south polar faces
                j = i - 8
                out[i][-size:, :size] = np.rot90(polar_faces[1],
                                                 -j)[margin:offset,
                                                     offset:-margin]
                out[i] *= blend_masks[7]

        pool.map(work, [0, 1, 2, 3, 8, 9, 10, 11])

    extra = nside // 4 + transition
    offset = extra + margin

    with sharedmem_pool(num_cores, numexpr=False) as pool:

        def work(i):
            if i < 4:
                # north
                out[i][-extra:] += (blend_masks[0][-extra:] *
                                    eq_faces[i][margin:offset, offset:-offset])
                # east
                out[i][:, :extra] += (
                    blend_masks[1][:, :extra] *
                    eq_faces[(i + 1) % 4][offset:-offset, -offset:-margin])
            elif i < 8:
                # north-west
                out[i][-extra:, -extra:] += (
                    blend_masks[4][-extra:, -extra:] *
                    eq_faces[(i - 1) % 4][margin:offset, margin:offset])
                # middle
                out[i] += (eq_faces[i - 4][offset:-offset, offset:-offset])
                # south-east
                out[i][:extra, :extra] += (
                    blend_masks[5][:extra, :extra] *
                    eq_faces[(i - 3) % 4][-offset:-margin, -offset:-margin])
            else:
                # west
                out[i][:, -extra:] += (
                    blend_masks[3][:, -extra:] *
                    eq_faces[i - 8][offset:-offset, margin:offset])
                # south
                out[i][:extra] += (
                    blend_masks[2][:extra] *
                    eq_faces[(i - 7) % 4][-offset:-margin, offset:-offset])

        pool.map(work, range(12))

    with sharedmem_pool(num_cores, numexpr=False) as pool:

        def work(i):
            if i < 4:
                out[i] /= (blend_masks[6] + blend_masks[0] + blend_masks[1])
            elif i < 8:
                out[i] /= (1 + blend_masks[4] + blend_masks[5])
            else:
                out[i] /= (blend_masks[7] + blend_masks[2] + blend_masks[3])

        pool.map(work, range(12))

    return np.array(out)