def test_all_or_nothing(self):
        # load the data
        graph=np.loadtxt('data/braess_graph.csv', delimiter=',', skiprows=1)
        g = construct_igraph(graph)
        od=np.loadtxt('data/braess_od.csv', delimiter=',', skiprows=1)
        od={int(od[0]): ([int(od[1])],[od[2]])}
        # all or nothing assignment
        L = all_or_nothing(g, od)
        self.assertTrue(np.linalg.norm(L - np.array([2., 0., 2., 0., 2.])) < eps)

        g.es["weight"] = [1., 1., 1000., 1.0, 0.0]
        # modify graph
        L = all_or_nothing(g, od)
        self.assertTrue(np.linalg.norm(L - np.array([0., 2., 0., 0., 2.])) < eps)
def LA_free_flow_costs(thres, cog_costs):
    '''
    study aiming at comparing the OD costs of all-or-nothing assignment
    between costs = travel times, and costs with multiplicative cognitive costs
    '''
    net, demand, node, geom = load_LA_2()
    g = construct_igraph(net)
    g2 = construct_igraph(net)
    od = construct_od(demand)
    print np.array(g.es["weight"]).dot(all_or_nothing(g, od))/ (np.sum(demand[:,2])*60.)
    for K in cog_costs:
        net2, small_capacity = multiply_cognitive_cost(net, geom, thres, K)
        g2.es["weight"] = net2[:,3]
        print np.array(g.es["weight"]).dot(all_or_nothing(g2, od))/ (np.sum(demand[:,2])*60.)
def all_or_nothing_assignment(cost, net, demand):
    # given vector of edge costs, graph, and demand, computes the AoN
    # assignment
    g = construct_igraph(net)
    od = construct_od(demand)
    g.es["weight"] = cost.tolist()
    return all_or_nothing(g, od)
Example #4
0
    def test_all_or_nothing(self):
        # load the data
        graph = np.loadtxt('data/braess_graph.csv', delimiter=',', skiprows=1)
        g = construct_igraph(graph)
        od = np.loadtxt('data/braess_od.csv', delimiter=',', skiprows=1)
        od = {int(od[0]): ([int(od[1])], [od[2]])}
        # all or nothing assignment
        L = all_or_nothing(g, od)
        self.assertTrue(
            np.linalg.norm(L - np.array([2., 0., 2., 0., 2.])) < eps)

        g.es["weight"] = [1., 1., 1000., 1.0, 0.0]
        # modify graph
        L = all_or_nothing(g, od)
        self.assertTrue(
            np.linalg.norm(L - np.array([0., 2., 0., 0., 2.])) < eps)
Example #5
0
def search_direction(f, graph, g, od):
    # computes the Frank-Wolfe step
    # g is just a canvas containing the link information and to be updated with
    # the most recent edge costs
    x = np.power(f.reshape((f.shape[0], 1)), np.array([0, 1, 2, 3, 4]))
    grad = np.einsum('ij,ij->i', x, graph[:, 3:])
    # print x.shape, graph[:,3:].shape, grad.shape
    # print x[0], graph[:,3:][0], grad[0]
    g.es['weight'] = grad.tolist()

    #start timer
    #start_time1 = timeit.default_timer()

    L, path_flows = all_or_nothing(g, od)

    # print len(path_flows)
    # for k in path_flows:
    #     print k, path_flows[k]
    #     exit(1)

    #end of timer
    #elapsed1 = timeit.default_timer() - start_time1
    #print ('all_or_nothing took  %s seconds' % elapsed1)

    return L, grad, path_flows
def LA_free_flow_costs(thres, cog_costs):
    '''
    study aiming at comparing the OD costs of all-or-nothing assignment
    between costs = travel times, and costs with multiplicative cognitive costs
    '''
    net, demand, node, geom = load_LA_2()
    g = construct_igraph(net)
    g2 = construct_igraph(net)
    od = construct_od(demand)
    print np.array(g.es["weight"]).dot(all_or_nothing(
        g, od)) / (np.sum(demand[:, 2]) * 60.)
    for K in cog_costs:
        net2, small_capacity = multiply_cognitive_cost(net, geom, thres, K)
        g2.es["weight"] = net2[:, 3]
        print np.array(g.es["weight"]).dot(all_or_nothing(
            g2, od)) / (np.sum(demand[:, 2]) * 60.)
 def test_all_or_nothing_2(self):
     # load the data
     graph=np.loadtxt('data/graph_test.csv', delimiter=',')
     g = construct_igraph(graph)
     # print graph
     od=np.loadtxt('data/od_test.csv', delimiter=',')
     od={int(od[0]): ([int(od[1])],[od[2]])}
     L = all_or_nothing(g, od)
def search_direction(f, graph, g, od):
    # computes the Frank-Wolfe step
    # g is just a canvas containing the link information and to be updated with
    # the most recent edge costs
    x = np.power(f.reshape((f.shape[0], 1)), np.array([0, 1, 2, 3, 4]))
    grad = np.einsum('ij,ij->i', x, graph[:, 3:])
    g.es["weight"] = grad.tolist()
    return all_or_nothing(g, od), grad
Example #9
0
 def test_all_or_nothing_2(self):
     # load the data
     graph = np.loadtxt('data/graph_test.csv', delimiter=',')
     g = construct_igraph(graph)
     # print graph
     od = np.loadtxt('data/od_test.csv', delimiter=',')
     od = {int(od[0]): ([int(od[1])], [od[2]])}
     L = all_or_nothing(g, od)
def search_direction(f, graph, g, od):
    # computes the Frank-Wolfe step
    # g is just a canvas containing the link information and to be updated with 
    # the most recent edge costs
    x = np.power(f.reshape((f.shape[0],1)), np.array([0,1,2,3,4]))
    grad = np.einsum('ij,ij->i', x, graph[:,3:])
    g.es["weight"] = grad.tolist()
    return all_or_nothing(g, od), grad
def residual(graphs, demands, g, ods, fs):
    f = np.sum(fs, axis=1)
    x = np.power(f.reshape((graphs[0].shape[0],1)), np.array([0,1,2,3,4]))
    r = 0.
    for i, (graph, demand, od) in enumerate(zip(graphs, demands, ods)):
        grad = np.einsum('ij,ij->i', x, graph[:,3:])
        g.es["weight"] = grad.tolist()
        L = all_or_nothing(g, od)
        r = r + grad.dot(fs[:,i] - L)
    return r
def residual(graphs, demands, g, ods, fs):
    f = np.sum(fs, axis=1)
    x = np.power(f.reshape((graphs[0].shape[0], 1)), np.array([0, 1, 2, 3, 4]))
    r = 0.
    for i, (graph, demand, od) in enumerate(zip(graphs, demands, ods)):
        grad = np.einsum('ij,ij->i', x, graph[:, 3:])
        g.es["weight"] = grad.tolist()
        L = all_or_nothing(g, od)
        r = r + grad.dot(fs[:, i] - L)
    return r
Example #13
0
def search_direction(f, graph, g, od, features):
    # computes the Frank-Wolfe step
    # g is just a canvas containing the link information and to be updated with
    # the most recent edge costs
    x = np.power(f.reshape((f.shape[0], 1)), np.array([0, 1, 2, 3, 4]))
    grad = np.einsum('ij,ij->i', x, graph[:, 3:])
    g.es["weight"] = grad.tolist()

    #start timer
    #start_time1 = timeit.default_timer()

    L = all_or_nothing(g, od)

    #end of timer
    #elapsed1 = timeit.default_timer() - start_time1
    #print ("all_or_nothing took  %s seconds" % elapsed1)

    return L, grad
def search_direction_social_optimum(f, graph, g, od):
    # computes the Frank-Wolfe step
    # g is just a canvas containing the link information and to be updated with
    # the most recent edge costs
    x = np.power(f.reshape((f.shape[0], 1)), np.array([0, 1, 2, 3, 4]))
    #import pdb; pdb.set_trace()
    #When we add the price of anarchy, the cost function becomes a0+ 2*a2*x+ 3*a3*x^2+ 4*a4*x^3+ 5*a5*x^4
    #Matrix coefficients saves the 1, 2, 3, 4, and 5 coefficients in front of the ai*x terms
    coefficients = np.array([1, 2, 3, 4, 5])
    onesArray = np.ones((f.shape[0], 5))
    coefficients = onesArray * coefficients.transpose()
    #y stands for the flow multiplied by the coefficients
    #import pdb; pdb.set_trace()
    y = np.einsum('ij, ij->ij', x, coefficients)
    grad = np.einsum('ij,ij->i', y, graph[:, 3:])
    g.es["weight"] = grad.tolist()

    #Calculating All_or_nothing
    L = all_or_nothing(g, od)

    return L, grad
def total_free_flow_cost(g, od):
    return np.array(g.es["weight"]).dot(all_or_nothing(g, od))
def all_or_nothing_assignment(cost, net, demand):
    # given vector of edge costs, graph, and demand, computes the AoN assignment
    g = construct_igraph(net)
    od = construct_od(demand)
    g.es["weight"] = cost.tolist()    
    return all_or_nothing(g, od)
def total_free_flow_cost(g, od):
    return np.array(g.es["weight"]).dot(all_or_nothing(g, od))
def total_ff_costs_heterogeneous(graphs, g, ods):
    cost = 0.
    for graph, od in zip(graphs, ods):
        g.es["weight"] = graph[:, 3].tolist()
        cost = cost + graph[:, 3].dot(all_or_nothing(g, od))
    return cost
def total_ff_costs_heterogeneous(graphs, g, ods):
    cost = 0.
    for graph, od in zip(graphs, ods):
        g.es["weight"] = graph[:,3].tolist()
        cost = cost + graph[:,3].dot(all_or_nothing(g, od))
    return cost