# PyTorch tutorial codes for course EL-9133 Advanced Machine Learning, NYU, Spring 2018 # Architecture/optim.py: define optimizer # read: http://pytorch.org/docs/master/optim.html import torch.optim as optim from Pipeline.option import args from Architecture.model import model optimizer = None if args.optimizer == 'SGD': optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.1) elif args.optimizer == 'Adam': optimizer = optim.Adam(model.parameters(), lr=args.lr) else: raise ValueError('Wrong name of optimizer') print('\n---Training Details---') print('batch size:', args.batch_size) print('seed number', args.seed) print('\n---Optimization Information---') print('optimizer:', args.optimizer) print('lr:', args.lr)
import torch.optim as optim from Pipeline.option import args from Architecture.model import model from Architecture.cls import CyclicLR optimizer = None if args.optimizer =='SGD': optimizer = optim.SGD(model.parameters(), lr=args.lr2min, momentum=0.5) elif args.optimizer =='Adam': optimizer = optim.Adam(model.parameters(), lr=args.lr2min) elif args.optimizer =='Adadelta': optimizer = optim.Adadelta(model.parameters()) else: raise ValueError('Wrong name of optimizer') scheduler = CyclicLR(optimizer, base_lr = args.lr1min, max_lr = args.lr1max, step_size =args.cli1) scheduler_sw = CyclicLR(optimizer, base_lr = args.lr2min, max_lr = args.lr2max, step_size =args.cli2)
# PyTorch tutorial codes for course EL-9133 Advanced Machine Learning, NYU, Spring 2018 # Architecture/optim.py: define optimizer # read: http://pytorch.org/docs/master/optim.html import torch.optim as optim from Pipeline.option import args from Architecture.model import model optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) print('\n---Training Details---') print('batch size:', args.batch_size) print('seed number', args.seed) print('\n---Optimization Information---') print('optimizer: SGD') print('lr:', args.lr) print('momentum:', args.momentum)