Example #1
0
def ques4(dim, p0):
    ## DFS doesn't return shortest path
    samples = 10
    spacing = 0.05
    total = int(math.ceil(p0 / spacing))
    meanValues = np.zeros([total + 1, 3])
    for i in range(total + 1):
        p = i * spacing
        path = np.zeros([samples, 3])
        for j in range(samples):
            currentRow = j
            g = generateMaze(dim, p)
            k1 = runAstar(copy(g))
            path[currentRow, 0] = k1['pathLength']
            k2 = runBfs(copy(g))
            path[currentRow, 1] = k2['pathLength']
            k3 = rundfs(copy(g))
            path[currentRow, 2] = k3['pathLength']
        if nonZeroElements(path[:, 0]) > 0:
            meanValues[i, 0] = np.sum(path[:, 0] / nonZeroElements(path[:, 0]))
        if nonZeroElements(path[:, 1]) > 0:
            meanValues[i, 1] = np.sum(path[:, 1] / nonZeroElements(path[:, 1]))
        if nonZeroElements(path[:, 2]) > 0:
            meanValues[i, 2] = np.sum(path[:, 2] / nonZeroElements(path[:, 2]))

    return meanValues
Example #2
0
def ques1():
    f = open("output/question1", "w")
    f.write("A-star\t\t\tBFS\t\t\tDFS\n")
    for j in [
            0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.30, 0.35, 0.4
    ]:  ## for values above path doesn't exist in most of the cases,0.5,0.6,0.7,0.8,0.9
        f.write("------------------- " + str(j) +
                " ----------------------------\n")
        for i in [100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800]:
            maze = generateMaze(i, prob=j)
            mapA = runAstar(copy(maze))
            mapB = runBfs(maze=copy(maze))
            # successB = ans['pathExists']
            # timetakenB = ans['timeTaken']
            mapC = rundfs(maze=copy(maze))

            f.write(
                str(mapA['timeTaken']) + "\t" + str(mapB['timeTaken']) + "\t" +
                str(mapC['timeTaken']) + "\n")
            f.write(
                str(mapA['success']) + "\t" + str(mapB['success']) + "\t" +
                str(mapC['success']) + "\n")
        print("-----------------------------" + str(j) +
              "----------------------------\n")
        f.write(
            "################################################################\n"
        )
    f.close()
Example #3
0
def test():
    g = generateMaze(10, 0.0)
    k = Astar(g, ismanhattan=True)
    if k.success == True:
        plotMatrix(k.getShortestPath())


# test()
Example #4
0
def ques5(dim, p):
    f = open('output/question5', 'w+')

    spacing = 0.05
    total = int(math.ceil(p / spacing))
    for i in range(total + 1):
        p0 = i * spacing
        pLength_dfs = 0
        iter_dfs = 0
        pLength_astar_m = 0
        iter_astar_m = 0
        pLength_astar_e = 0
        iter_astar_e = 0

        for j in range(10):
            while True:
                maze = generateMaze(size=dim, prob=p0)
                s = rundfs(copy(maze))
                if s['success'] is True:
                    f.write("DFS")
                    f.write(str(p0) + "------" + str(s) + "\n")
                    pLength_dfs += s['pathLength']
                    iter_dfs += 1
                    break

            isManhattan = True
            a = runAstar(copy(maze), isManhattan)

            if a['success'] is True:
                f.write("A*-Manhattan")
                f.write(str(p0) + "------" + str(a) + "\n")
                pLength_astar_m += a['pathLength']
                iter_astar_m += 1

            isManhattan = False
            a = runAstar(copy(maze), isManhattan)

            if a['success'] is True:
                f.write("A*-Euclidean")
                f.write(str(p0) + "------" + str(a) + "\n")
                pLength_astar_e += a['pathLength']
                iter_astar_e += 1

        mean_dfs = pLength_dfs / iter_dfs
        mean_astar_m = pLength_astar_m / iter_astar_m
        mean_astar_e = pLength_astar_e / iter_astar_e

        f.write("average path length(A*-Manhattan): " + str(mean_astar_m))
        f.write("average path length(A*-Euclidean): " + str(mean_astar_e))
        f.write("average path length(DFS): " + str(mean_dfs))
    f.writable()

    f.close()
Example #5
0
def ques3(dim):
    # as dfs is fast we cab use it find if path exists or not
    f = open('output/question3_sol', 'w')
    samples = 100
    for p0 in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
        success_Count = 0
        for i in range(samples):
            maze = generateMaze(size=dim, prob=p0)
            mapD = rundfs(maze)
            if mapD['success'] == True:
                success_Count += 1
        f.write(str(p0) + "------" + str(success_Count) + "\n")
        print(str(p0) + "\n")
    f.close()
Example #6
0
def ques7(dim, p):

    f = open('output/question7', 'w+')

    spacing = 0.05
    total = int(math.ceil(p / spacing))
    for i in range(total + 1):
        nodes_dfs = nodes_bfs = 0
        iter_dfs = iter_bfs = 0
        nodes_astar_m = 0
        iter_astar_m = 0

        for j in range(10):
            p0 = i * spacing
            while True:
                maze = generateMaze(size=dim, prob=p0)
                s = rundfs(copy(maze))
                if s['success'] is True:
                    f.write("DFS")
                    f.write(str(p0) + "------" + str(s) + "\n")
                    nodes_dfs += s['nodesExpanded']
                    iter_dfs += 1
                    break

            b = runBfs(copy(maze))
            if b['success'] is True:
                f.write("BFS")
                f.write(str(p0) + "------" + str(b) + "\n")
                nodes_bfs += b['nodesExpanded']
                iter_bfs += 1

            isManhattan = True
            a = runAstar(copy(maze), isManhattan)
            if a['success'] is True:
                f.write("A*-Manhattan")
                f.write(str(p0) + "------" + str(a) + "\n")
                nodes_astar_m += a['nodesExpanded']
                iter_astar_m += 1

        mean_dfs = nodes_dfs / iter_dfs
        mean_bfs = nodes_bfs / iter_bfs
        mean_astar_m = nodes_astar_m / iter_astar_m

        f.write("average nodes expanded(DFS): " + str(mean_dfs))
        f.write("average nodes expanded(BFS): " + str(mean_bfs) + "\n")
        f.write("average nodes expanded(A*-Manhattan): " + str(mean_astar_m))

    f.writable()
    f.close()
Example #7
0
def ques6(dim, p):
    # spacing = 0.05
    # total = int(math.ceil(p0 / spacing))
    # for i in range(total+1):
    #     p = i*spacing
    #     g = generateMaze(dim,p)
    #     runAstar(copy(g))
    #     runBfs(copy(g))
    #     rundfs(copy(g))
    f = open('output/question6_1', 'w+')

    spacing = 0.05
    total = int(math.ceil(p / spacing))
    for i in range(total + 1):
        nodes_astar_m = 0
        iter_astar_m = 0
        nodes_astar_e = 0
        iter_astar_e = 0
        for j in range(10):
            p0 = i * spacing
            while True:
                isManhattan = True
                maze = generateMaze(size=dim, prob=p0)
                a = runAstar(copy(maze), isManhattan)
                if a['success'] is True:
                    f.write("A*-Manhattan")
                    f.write(str(p0) + "------" + str(a) + "\n")
                    nodes_astar_m += a['nodesExpanded']
                    iter_astar_m += 1
                    break

            isManhattan = False
            a = runAstar(copy(maze), isManhattan)

            if a['success'] is True:
                f.write("A*-Euclidean")
                f.write(str(p0) + "------" + str(a) + "\n")
                nodes_astar_e += a['nodesExpanded']
                iter_astar_e += 1

        mean_astar_m = nodes_astar_m / iter_astar_m
        mean_astar_e = nodes_astar_e / iter_astar_e

        f.write("average nodes expanded(A*-Manhattan): " + str(mean_astar_m))
        f.write("average nodes expanded(A*-Euclidean): " + str(mean_astar_e) +
                "\n")
    f.writable()

    f.close()
Example #8
0
def ques2():
    maze = generateMaze(1000, prob=0.2)
    runAstar(copy(maze))

    runBfs(copy(maze))
    rundfs(copy(maze))
Example #9
0
        if algo == 'BFS':
            bfs = runBfs(m)
            return bfs[property]
        if algo == 'Astar':
            a = runAstar(m, ismanhattan=True)
            return a[property]

    def schedule(self, a):
        return 1.0 / (1 + math.log2(a + 1))

    def decision(self, probability):
        return random.random() < probability


f = open("output/question10", 'w')
g1 = generateMaze(size=6, prob=0.1)
g2 = generateMaze(size=6, prob=0.2)
g3 = generateMaze(size=6, prob=0.3)
for algo in ['DFS', 'BFS', 'Astar']:
    print("for Algorithm: " + algo + "\n")
    for property in ['pathLength', 'nodesExpanded', 'fringeSize']:
        for g in [g1, g2, g3]:
            sA = simAnneal(g, property=property)
            print(
                "################################################################################################"
            )
            print(
                "################################################################################################"
            )
            print("Actual:" + algo + "##" + property + "##" +
                  str(sA.getValue(g, property=property)) + "\n")