def slope(self, x):
     if self.option == 0:
         return self.gradient(x)
     if self.option == 1:
         # implement AD here
         obj = AD.AutoDiff(x)
         return self.curve(obj).dx
     if self.option == 2:
         # implement numerical method here
         h = 1e-2
         return (self.curve(x + h) - self.curve(x)) / h
Example #2
0
def test_log_invalid_base():
    with pytest.raises(ValueError):
        AD.log(x1, base='a')
Example #3
0
def test_cos_log10_rpow():
    f = AD.cos(AD.log(2**x1, base=10))
    assert tol > abs(f.x - 0.82417070595)
    assert tol > abs(f.dx - -0.17048576675265)
Example #4
0
def test_tan_exp_div_neg():
    f = -AD.tan(x1) / AD.exp(x1)
    assert tol > abs(f.x - 0.29571298878)
    assert tol > abs(f.dx - -1.077192940578)
Example #5
0
def test_sin_pow_log():
    f = AD.sin(x1)**2 * AD.log(x1)
    assert tol > abs(f.x - 0.573109206726)
    assert tol > abs(f.dx - -0.111164610647518727)
Example #6
0
def test_logistic():
    f = AD.logistic(x1)
    assert f.x == 1 / (1 + np.exp(-2))
    assert f.dx == np.exp(-2) / (1 + np.exp(-2))**2
    f = AD.logistic(2.0)
    assert f == 1 / (1 + np.exp(-2.0))
Example #7
0
def test_exp():
    f = AD.exp(x1)
    assert f.x == np.exp(2)
    assert f.dx == np.exp(2)
    f = AD.exp(2)
    assert f == np.exp(2)
Example #8
0
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import modules.rollingball as RB
import AutoDiff_CKMZ.modules.AutoDiff as AD
from time import time

function_list = [lambda x: AD.sin(x), 
                 lambda x: AD.exp(x), 
                 lambda x: x * AD.sin(x), 
                 lambda x: - AD.log(x), 
                 lambda x: AD.sinh(x), 
                 lambda x: AD.exp(AD.cos(x)),
                 lambda x: 2 ** x, 
                 lambda x: 1 / AD.tan(x), 
                 lambda x: AD.sin(x) / x, 
                 lambda x: x ** 2]


derivative_list = [lambda x: np.cos(x), 
                   lambda x: np.exp(x), 
                   lambda x: np.sin(x) + x * np.cos(x), 
                   lambda x: -1 / x, 
                   lambda x: np.cosh(x), 
                   lambda x: - np.exp(np.cos(x)) * np.sin(x),
                   lambda x: 2 ** x * np.log(2), 
                   lambda x: - 1 / np.sin(x) ** 2, 
                   lambda x: (x * np.cos(x) - np.sin(x)) / x ** 2, 
                   lambda x: 2 * x]

class function():
Example #9
0
def test_arcsin():
    f = AD.arcsin(AD.AutoDiff(0.5))
    assert f.x == np.arcsin(0.5)
    assert f.dx == 1 / np.sqrt(1 - 0.5**2)
    f = AD.arcsin(0.5)
    assert f == np.arcsin(0.5)
Example #10
0
def test_arccos():
    f = AD.arccos(AD.AutoDiff(0.5))
    assert f.x == np.arccos(0.5)
    assert f.dx == -1 / np.sqrt(1 - 0.5**2)
    f = AD.arccos(0.5)
    assert f == np.arccos(0.5)
Example #11
0
def test_arctan():
    f = AD.arctan(x1)
    assert f.x == np.arctan(2)
    assert f.dx == 1 / (1 + 2**2)
    f = AD.arctan(0.5)
    assert f == np.arctan(0.5)
Example #12
0
def test_tan():
    f = AD.tan(x1)
    assert f.x == np.tan(2)
    assert f.dx == 1 / np.cos(2)**2
    f = AD.tan(0.5)
    assert f == np.tan(0.5)
Example #13
0
def test_cos():
    f = AD.cos(x1)
    assert f.x == np.cos(2)
    assert f.dx == -np.sin(2)
    f = AD.cos(0.2)
    assert f == np.cos(0.2)
Example #14
0
def test_sin():
    f = AD.sin(x1)
    assert f.x == np.sin(2)
    assert f.dx == np.cos(2)
    f = AD.sin(1)
    assert f == np.sin(1)
Example #15
0
def test_log():
    f = AD.log(x1)
    assert f.x == np.log(2)
    assert f.dx == 1 / 2
    f = AD.log(2)
    assert f == np.log(2)
Example #16
0
def test_multivariate():
    f = x3[0] * AD.exp(3 * x3[1])
    assert f.dx[0] == 1
    assert f.dx[1] == 6
Example #17
0
def test_eq():
    assert x1 == AD.AutoDiff(2.0)
    assert AD.AutoDiff(2.0, 0) == 2.0
Example #18
0
def test_tanh():
    f = AD.tanh(x1)
    assert f.x == np.tanh(2)
    assert f.dx == 1 / (np.cosh(2)**2)
    f = AD.tanh(2)
    assert f == np.tanh(2)
Example #19
0
def test_sinh():
    f = AD.sinh(x1)
    assert f.x == np.sinh(2)
    assert f.dx == np.cosh(2)
    f = AD.sinh(0.5)
    assert f == np.sinh(0.5)
Example #20
0
import pytest
import numpy as np
#from AutoDiff_CKMZ.modules.AutoDiff import AutoDiff
import AutoDiff_CKMZ.modules.AutoDiff as AD

x1 = AD.AutoDiff(2.0)
x2 = AD.AutoDiff(3.0)

tol = 1e-8


def test_add():
    f = x1 + 3
    assert f.x == 5
    assert f.dx == 1


def test_radd():
    f = 1 + x1
    assert f.x == 3
    assert f.dx == 1


def test_sub():
    f = x1 - 3
    assert f.x == -1
    assert f.dx == 1


def test_rsub():
    f = 3 - x1