def applyBinnedAcceptance(config, ws, time, timeresmodel, acceptance): """ apply a (binned) acceptance to a decay time pdf config -- configuration dictionary ws -- workspace to import generated objects into time -- decay time observable timeresmodel -- decay time resolution model (not acceptance corrected) acceptance -- acceptance function returns acceptance-corrected resolution model relevant configuration dictionary keys: 'NBinsAcceptance': 0 for unbinnned acceptance, > 0 to bin acceptance to speed up evaluation (keep at 0 for spline acceptance!) """ if None == acceptance or 0 >= config['NBinsAcceptance']: return timeresmodel from ROOT import RooArgSet, RooBinnedPdf, RooEffResModel # bin the acceptance if not already binned if not acceptance.isBinnedDistribution(RooArgSet(time)): acceptance = WS(ws, RooBinnedPdf( "%sBinnedAcceptance" % acceptance.GetName(), "%sBinnedAcceptance" % acceptance.GetName(), time, 'acceptanceBinning', acceptance)) acceptance.setForceUnitIntegral(True) # create the acceptance-corrected resolution model effresmodel = WS(ws, RooEffResModel( '%s_timeacc_%s' % (timeresmodel.GetName(), acceptance.GetName()), '%s plus time acceptance %s' % (timeresmodel.GetTitle(), acceptance.GetTitle()), timeresmodel, acceptance)) return effresmodel
def getDataSet(ws, cuts, files): from ROOT import TChain, TTree import ctypes c = TChain('DecayTree') for fname in files: print 'DEBUG: ADDING FILE %s' % fname c.AddFile(fname) print 'DEBUG: CUTS: %s' % cuts t = c.CopyTree(cuts) ROOT.SetOwnership(t, True) del c print 'DEBUG: ENTRIES AFTER APPLYING CUTS: %u' % t.GetEntries() time = ws.var('time') timeerr = ws.var('timeerr') ds = WS(ws, RooDataSet('ds', 'ds', RooArgSet(time, timeerr)), []) for i in xrange(0, t.GetEntries()): t.GetEntry(i) variables = [ timeConv * t.GetBranch(name).GetLeaf(name).GetValue(0) for name in ('lab0_LifetimeFit_ctau', 'lab0_LifetimeFit_ctauErr') ] time.setVal(variables[0]) timeerr.setVal(variables[1]) ds.add(RooArgSet(time, timeerr)) del t ds.Print('v') return ds
def buildTimePdf(config): """ build time pdf, return pdf and associated data in dictionary """ from B2DXFitters.WS import WS print 'CONFIGURATION' for k in sorted(config.keys()): print ' %32s: %32s' % (k, config[k]) # start building the fit ws = RooWorkspace('ws_%s' % config['Context']) one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) # start by defining observables time = WS(ws, RooRealVar('time', 'time [ps]', 0.2, 15.0)) qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) qt = WS(ws, RooCategory('qt', 'tagging decision')) qt.defineType( 'B+', +1) qt.defineType('Untagged', 0) qt.defineType( 'B-', -1) # now other settings Gamma = WS(ws, RooRealVar( 'Gamma', 'Gamma', 0.661)) # ps^-1 DGamma = WS(ws, RooRealVar('DGamma', 'DGamma', 0.106)) # ps^-1 Dm = WS(ws, RooRealVar( 'Dm', 'Dm', 17.719)) # ps^-1 mistag = WS(ws, RooRealVar('mistag', 'mistag', 0.35, 0.0, 0.5)) tageff = WS(ws, RooRealVar('tageff', 'tageff', 0.60, 0.0, 1.0)) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', 0.040, 0.001, 0.100)) # now build the PDF from B2DXFitters.timepdfutils import buildBDecayTimePdf from B2DXFitters.resmodelutils import getResolutionModel from B2DXFitters.acceptanceutils import buildSplineAcceptance obs = [ qf, qt, time ] acc, accnorm = buildSplineAcceptance(ws, time, 'Bs2DsPi_accpetance', config['SplineAcceptance']['KnotPositions'], config['SplineAcceptance']['KnotCoefficients'][config['Context']], 'FIT' in config['Context']) # float for fitting if 'GEN' in config['Context']: acc = accnorm # use normalised acceptance for generation # get resolution model resmodel, acc = getResolutionModel(ws, config, time, timeerr, acc) # build the time pdf pdf = buildBDecayTimePdf( config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [ [ mistag ] ], [ tageff ], Gamma, DGamma, Dm, C = one, D = zero, Dbar = zero, S = zero, Sbar = zero, timeresmodel = resmodel, acceptance = acc) return { # return things 'ws': ws, 'pdf': pdf, 'obs': obs }
def buildTimePdf(config): """ build time pdf, return pdf and associated data in dictionary """ from B2DXFitters.WS import WS print 'CONFIGURATION' for k in sorted(config.keys()): print ' %32s: %32s' % (k, config[k]) # start building the fit ws = RooWorkspace('ws_%s' % config['Context']) one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) # start by defining observables time = WS(ws, RooRealVar('time', 'time [ps]', 0.2, 15.0)) qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) qt = WS(ws, RooCategory('qt', 'tagging decision')) qt.defineType('B+', +1) qt.defineType('Untagged', 0) qt.defineType('B-', -1) # now other settings Gamma = WS(ws, RooRealVar('Gamma', 'Gamma', 0.661)) # ps^-1 DGamma = WS(ws, RooRealVar('DGamma', 'DGamma', 0.106)) # ps^-1 Dm = WS(ws, RooRealVar('Dm', 'Dm', 17.719)) # ps^-1 mistag = WS(ws, RooRealVar('mistag', 'mistag', 0.35, 0.0, 0.5)) tageff = WS(ws, RooRealVar('tageff', 'tageff', 0.60, 0.0, 1.0)) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', 0.040, 0.001, 0.100)) # now build the PDF from B2DXFitters.timepdfutils import buildBDecayTimePdf from B2DXFitters.resmodelutils import getResolutionModel from B2DXFitters.acceptanceutils import buildSplineAcceptance obs = [qf, qt, time] acc, accnorm = buildSplineAcceptance( ws, time, 'Bs2DsPi_accpetance', config['SplineAcceptance']['KnotPositions'], config['SplineAcceptance']['KnotCoefficients'][config['Context']], 'FIT' in config['Context']) # float for fitting if 'GEN' in config['Context']: acc = accnorm # use normalised acceptance for generation # get resolution model resmodel, acc = getResolutionModel(ws, config, time, timeerr, acc) # build the time pdf pdf = buildBDecayTimePdf(config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [[mistag]], [tageff], Gamma, DGamma, Dm, C=one, D=zero, Dbar=zero, S=zero, Sbar=zero, timeresmodel=resmodel, acceptance=acc) return { # return things 'ws': ws, 'pdf': pdf, 'obs': obs }
'RooAdaptiveGaussKronrodIntegrator1D').setRealValue('maxSeg', 1000) RooAbsReal.defaultIntegratorConfig().method1D().setLabel( 'RooAdaptiveGaussKronrodIntegrator1D') RooAbsReal.defaultIntegratorConfig().method1DOpen().setLabel( 'RooAdaptiveGaussKronrodIntegrator1D') # seed the Random number generator rndm = TRandom3(SEED + 1) RooRandom.randomGenerator().SetSeed(int(rndm.Uniform(4294967295))) del rndm # define some useful constants from B2DXFitters.WS import WS ws = RooWorkspace('ws') one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) # number of events to generate nevts = 10000 # define time and its per-event uncertainty time = WS(ws, RooRealVar('time', 'time [ps]', 0.2, 15.0)) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', 0.001, 0.100)) # define final state charge qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) # define list of tagging decision categories
def buildTimePdf(config): """ build time pdf, return pdf and associated data in dictionary """ from B2DXFitters.WS import WS print 'CONFIGURATION' for k in sorted(config.keys()): print ' %32s: %32s' % (k, config[k]) # start building the fit ws = RooWorkspace('ws_%s' % config['Context']) one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) # start by defining observables time = WS(ws, RooRealVar('time', 'time [ps]', 0.2, 15.0)) qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) qt = WS(ws, RooCategory('qt', 'tagging decision')) qt.defineType( 'B+', +1) qt.defineType('Untagged', 0) qt.defineType( 'B-', -1) # now other settings Gamma = WS(ws, RooRealVar( 'Gamma', 'Gamma', 0.661)) # ps^-1 DGamma = WS(ws, RooRealVar('DGamma', 'DGamma', 0.106)) # ps^-1 Dm = WS(ws, RooRealVar( 'Dm', 'Dm', 17.719)) # ps^-1 # HACK (1/2): be careful about lower bound on eta, since mistagpdf below # is zero below a certain value - generation in accept/reject would get # stuck eta = WS(ws, RooRealVar('eta', 'eta', 0.35, 0.0 if 'FIT' in config['Context'] else (1. + 1e-5) * max(0.0, config['TrivialMistagParams']['omega0']), 0.5)) tageff = WS(ws, RooRealVar('tageff', 'tageff', 0.60, 0.0, 1.0)) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', 0.040, 0.001, 0.100)) # now build the PDF from B2DXFitters.timepdfutils import buildBDecayTimePdf from B2DXFitters.resmodelutils import getResolutionModel from B2DXFitters.acceptanceutils import buildSplineAcceptance obs = [ qf, qt, time, eta ] acc, accnorm = buildSplineAcceptance(ws, time, 'Bs2DsPi_accpetance', config['SplineAcceptance']['KnotPositions'], config['SplineAcceptance']['KnotCoefficients'][config['Context']], 'FIT' in config['Context']) # float for fitting if 'GEN' in config['Context']: acc = accnorm # use normalised acceptance for generation # get resolution model resmodel, acc = getResolutionModel(ws, config, time, timeerr, acc) # build a (mock) mistag distribution mistagpdfparams = {} # start with parameters of mock distribution for sfx in ('omega0', 'omegaavg', 'f'): mistagpdfparams[sfx] = WS(ws, RooRealVar( 'Bs2DsPi_mistagpdf_%s' % sfx, 'Bs2DsPi_mistagpdf_%s' % sfx, config['TrivialMistagParams'][sfx])) # build mistag pdf itself mistagpdf = WS(ws, MistagDistribution( 'Bs2DsPi_mistagpdf', 'Bs2DsPi_mistagpdf', eta, mistagpdfparams['omega0'], mistagpdfparams['omegaavg'], mistagpdfparams['f'])) # build mistag calibration mistagcalibparams = {} # start with parameters of calibration for sfx in ('p0', 'p1', 'etaavg'): mistagcalibparams[sfx] = WS(ws, RooRealVar( 'Bs2DsPi_mistagcalib_%s' % sfx, 'Bs2DsPi_mistagpdf_%s' % sfx, config['MistagCalibParams'][sfx])) for sfx in ('p0', 'p1'): # float calibration paramters mistagcalibparams[sfx].setConstant(False) mistagcalibparams[sfx].setError(0.1) # build mistag pdf itself omega = WS(ws, MistagCalibration( 'Bs2DsPi_mistagcalib', 'Bs2DsPi_mistagcalib', eta, mistagcalibparams['p0'], mistagcalibparams['p1'], mistagcalibparams['etaavg'])) # build the time pdf pdf = buildBDecayTimePdf( config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [ [ omega ] ], [ tageff ], Gamma, DGamma, Dm, C = one, D = zero, Dbar = zero, S = zero, Sbar = zero, timeresmodel = resmodel, acceptance = acc, timeerrpdf = None, mistagpdf = [ mistagpdf ], mistagobs = eta) return { # return things 'ws': ws, 'pdf': pdf, 'obs': obs }
def accbuilder(time, knots, coeffs): # build acceptance function from copy import deepcopy myknots = deepcopy(knots) mycoeffs = deepcopy(coeffs) from ROOT import (RooBinning, RooArgList, RooPolyVar, RooCubicSplineFun) if (len(myknots) != len(mycoeffs) or 0 >= min(len(myknots), len(mycoeffs))): raise ValueError('ERROR: Spline knot position list and/or coefficient' 'list mismatch') # create the knot binning knotbinning = WS(ws, RooBinning(time.getMin(), time.getMax(), 'knotbinning')) for v in myknots: knotbinning.addBoundary(v) knotbinning.removeBoundary(time.getMin()) knotbinning.removeBoundary(time.getMax()) knotbinning.removeBoundary(time.getMin()) knotbinning.removeBoundary(time.getMax()) oldbinning, lo, hi = time.getBinning(), time.getMin(), time.getMax() time.setBinning(knotbinning, 'knotbinning') time.setBinning(oldbinning) time.setRange(lo, hi) del knotbinning del oldbinning del lo del hi # create the knot coefficients coefflist = RooArgList() i = 0 for v in mycoeffs: coefflist.add(WS(ws, RooRealVar('SplineAccCoeff%u' % i, 'SplineAccCoeff%u' % i, v))) i = i + 1 del mycoeffs coefflist.add(one) i = i + 1 myknots.append(time.getMax()) myknots.reverse() fudge = (myknots[0] - myknots[1]) / (myknots[2] - myknots[1]) lastmycoeffs = RooArgList( WS(ws, RooConstVar('SplineAccCoeff%u_coeff0' % i, 'SplineAccCoeff%u_coeff0' % i, 1. - fudge)), WS(ws, RooConstVar('SplineAccCoeff%u_coeff1' % i, 'SplineAccCoeff%u_coeff1' % i, fudge))) del myknots coefflist.add(WS(ws, RooPolyVar( 'SplineAccCoeff%u' % i, 'SplineAccCoeff%u' % i, coefflist.at(coefflist.getSize() - 2), lastmycoeffs))) del i # create the spline itself tacc = WS(ws, RooCubicSplineFun('SplineAcceptance', 'SplineAcceptance', time, 'knotbinning', coefflist)) del lastmycoeffs # make sure the acceptance is <= 1 for generation m = max([coefflist.at(j).getVal() for j in xrange(0, coefflist.getSize())]) from ROOT import RooProduct c = WS(ws, RooConstVar('SplineAccNormCoeff', 'SplineAccNormCoeff', 0.99 / m)) tacc_norm = WS(ws, RooProduct('SplineAcceptanceNormalised', 'SplineAcceptanceNormalised', RooArgList(tacc, c))) del c del m del coefflist return tacc, tacc_norm
def runBdGammaFitterOnToys(debug, wsname, pereventterr, year, toys,pathName, treeName, fileNamePull, configName, configNameMD, sWeightsCorr, noresolution, noacceptance, notagging, noprodasymmetry, nodetasymmetry, notagasymmetries, nosWeights, noUntagged, singletagger) : if not Blinding and not toys : print "RUNNING UNBLINDED!" really = input('Do you really want to unblind? ') if really != "yes" : exit(-1) if sWeightsCorr and nosWeights: print "ERROR: cannot have sWeightsCorr and nosWeights at the same time!" exit(-1) if notagging and not singletagger: print "ERROR: having more perfect taggers is meaningless! Please check your options" exit(-1) # Get the configuration file myconfigfilegrabber = __import__(configName,fromlist=['getconfig']).getconfig myconfigfile = myconfigfilegrabber() print "==========================================================" print "FITTER IS RUNNING WITH THE FOLLOWING CONFIGURATION OPTIONS" for option in myconfigfile : if option == "constParams" : for param in myconfigfile[option] : print param, "is constant in the fit" else : print option, " = ", myconfigfile[option] print "==========================================================" if debug: myconfigfile['Debug'] = True else: myconfigfile['Debug'] = False #Choosing fitting context myconfigfile['Context'] = 'FIT' # tune integrator configuration print "---> Setting integrator configuration" RooAbsReal.defaultIntegratorConfig().setEpsAbs(1e-7) RooAbsReal.defaultIntegratorConfig().setEpsRel(1e-7) RooAbsReal.defaultIntegratorConfig().getConfigSection('RooIntegrator1D').setCatLabel('extrapolation','Wynn-Epsilon') RooAbsReal.defaultIntegratorConfig().getConfigSection('RooIntegrator1D').setCatLabel('maxSteps','1000') RooAbsReal.defaultIntegratorConfig().getConfigSection('RooIntegrator1D').setCatLabel('minSteps','0') RooAbsReal.defaultIntegratorConfig().getConfigSection('RooAdaptiveGaussKronrodIntegrator1D').setCatLabel('method','21Points') RooAbsReal.defaultIntegratorConfig().getConfigSection('RooAdaptiveGaussKronrodIntegrator1D').setRealValue('maxSeg', 1000) # since we have finite ranges, the RooIntegrator1D is best suited to the job RooAbsReal.defaultIntegratorConfig().method1D().setLabel('RooIntegrator1D') # Reading data set #----------------------- lumRatio = RooRealVar("lumRatio","lumRatio", myconfigfile["LumRatio"][year]) print "==========================================================" print "Getting configuration" print "==========================================================" config = TString("../data/")+TString(configName)+TString(".py") from B2DXFitters.MDFitSettingTranslator import Translator mdt = Translator(myconfigfile,"MDSettings",False) MDSettings = mdt.getConfig() MDSettings.Print("v") bound = 1 Bin = [TString("BDTGA")] from B2DXFitters.WS import WS as WS ws = RooWorkspace("intWork","intWork") workspace =[] workspaceW = [] mode = "Bd2DPi" print "==========================================================" print "Getting sWeights" print "==========================================================" for i in range (0,bound): workspace.append(SFitUtils.ReadDataFromSWeights(TString(pathName), TString(treeName), MDSettings, TString(mode), TString(year), TString(""), TString("both"), False, toys, False, sWeightsCorr, singletagger, debug)) workspaceW.append(SFitUtils.ReadDataFromSWeights(TString(pathName), TString(treeName), MDSettings, TString(mode), TString(year), TString(""), TString("both"), True, toys, False, sWeightsCorr, singletagger, debug)) if nosWeights: workspace[0].Print("v") else: workspaceW[0].Print("v") zero = RooConstVar('zero', '0', 0.) half = RooConstVar('half','0.5',0.5) one = RooConstVar('one', '1', 1.) minusone = RooConstVar('minusone', '-1', -1.) two = RooConstVar('two', '2', 2.) nameData = TString("dataSet_time_")+part data = [] dataW = [] print "==========================================================" print "Getting input dataset" print "==========================================================" for i in range(0, bound): data.append(GeneralUtils.GetDataSet(workspace[i], nameData, debug)) dataW.append(GeneralUtils.GetDataSet(workspaceW[i], nameData, debug)) dataWA = dataW[0] dataA = data[0] if nosWeights: nEntries = dataA.numEntries() dataA.Print("v") else: nEntries = dataWA.numEntries() dataWA.Print("v") print "==========================================================" print "Getting observables" print "==========================================================" if nosWeights: obs = dataA.get() else: obs = dataWA.get() obs.Print("v") print "==========================================================" print "Creating variables" print "==========================================================" time = WS(ws,obs.find(MDSettings.GetTimeVarOutName().Data())) time.setRange(myconfigfile["BasicVariables"]["BeautyTime"]["Range"][0], myconfigfile["BasicVariables"]["BeautyTime"]["Range"][1]) print "==> Time" time.Print("v") terr = WS(ws,obs.find(MDSettings.GetTerrVarOutName().Data())) terr.setRange(myconfigfile["BasicVariables"]["BeautyTimeErr"]["Range"][0], myconfigfile["BasicVariables"]["BeautyTimeErr"]["Range"][1]) print "==> Time error" terr.Print("v") if noresolution: terr.setMin(0.0) terr.setVal(0.0) terr.setConstant(True) id = WS(ws,obs.find(MDSettings.GetIDVarOutName().Data())) print "==> Bachelor charge (to create categories; not really a variable!)" id.Print("v") if singletagger: tag = WS(ws,RooCategory("tagDecComb","tagDecComb")) tag.defineType("Bbar_1",-1) tag.defineType("Untagged",0) tag.defineType("B_1",+1) else: tag = WS(ws,obs.find("tagDecComb")) print "==> Tagging decision" tag.Print("v") mistag = WS(ws,obs.find("tagOmegaComb")) mistag.setRange(0,0.5) if notagging: mistag.setVal(0.0) mistag.setConstant(True) print "==> Mistag" mistag.Print("v") observables = RooArgSet(time,tag) # Physical parameters #----------------------- print "==========================================================" print "Setting physical parameters" print "==========================================================" gammad = WS(ws,RooRealVar('Gammad', '%s average lifetime' % bName, myconfigfile["DecayRate"]["Gammad"], 0., 5., 'ps^{-1}')) #setConstantIfSoConfigured(ws.obj('Gammad'),myconfigfile) deltaGammad = WS(ws,RooRealVar('deltaGammad', 'Lifetime difference', myconfigfile["DecayRate"]["DeltaGammad"], -1., 1., 'ps^{-1}')) #setConstantIfSoConfigured(ws.obj('deltaGammad'),myconfigfile) deltaMd = WS(ws,RooRealVar('deltaMd', '#Delta m_{d}', myconfigfile["DecayRate"]["DeltaMd"], 0.0, 1.0, 'ps^{-1}')) #setConstantIfSoConfigured(ws.obj('deltaMd'),myconfigfile) # Decay time acceptance model # --------------------------- print "==========================================================" print "Defining decay time acceptance model" print "==========================================================" if noacceptance: print '==> Perfect acceptance ("straight line")' tacc = None taccNorm = None else: print '==> Time-dependent acceptance' tacc, taccNorm = buildSplineAcceptance(ws, ws.obj('BeautyTime'), "splinePDF", myconfigfile["AcceptanceKnots"], myconfigfile["AcceptanceValues"], False, debug) print tacc print taccNorm # Decay time resolution model # --------------------------- print "==========================================================" print "Defining decay time resolution model" print "==========================================================" if noresolution: print '===> Using perfect resolution' trm = None terrpdf = None else: if not pereventterr: print '===> Using a mean resolution model' myconfigfile["DecayTimeResolutionModel"] = myconfigfile["DecayTimeResolutionMeanModel"] terrpdf = None else: print '===> Using a per-event time resolution' myconfigfile["DecayTimeResolutionModel"] = myconfigfile["DecayTimeResolutionPEDTE"] observables.add( terr ) terrWork = GeneralUtils.LoadWorkspace(TString(myconfigfile["Toys"]["fileNameTerr"]), TString(myconfigfile["Toys"]["Workspace"]), debug) terrpdf = [] for i in range(0,bound): terrtemp = WS(ws,Bs2Dsh2011TDAnaModels.GetRooHistPdfFromWorkspace(terrWork, TString(myconfigfile["Toys"]["TerrTempName"]), debug)) #Dirty, nasty but temporary workaround to cheat RooFit strict requirements (changing dependent RooRealVar) lab0_LifetimeFit_ctauErr = WS(ws,RooRealVar("lab0_LifetimeFit_ctauErr", "lab0_LifetimeFit_ctauErr", myconfigfile["BasicVariables"]["BeautyTimeErr"]["Range"][0], myconfigfile["BasicVariables"]["BeautyTimeErr"]["Range"][1])) terrHist = WS(ws,terrtemp.createHistogram("terrHist",lab0_LifetimeFit_ctauErr)) terrDataHist = WS(ws,RooDataHist("terrHist","terrHist",RooArgList(terr),terrHist)) terrpdf.append(WS(ws,RooHistPdf(terrtemp.GetName(),terrtemp.GetTitle(),RooArgSet(terr),terrDataHist))) print terrpdf[i] trm, tacc = getResolutionModel(ws, myconfigfile, time, terr, tacc) print trm print tacc # Per-event mistag # --------------------------- print "==========================================================" print "Defining tagging and mistag" print "==========================================================" p0B = [] p0Bbar = [] p1B = [] p1Bbar = [] avB = [] avBbar = [] constList = RooArgSet() mistagCalibB = [] mistagCalibBbar = [] tagOmegaList = [] if notagging: print '==> No tagging: <eta>=0' mistag.setVal(0.0) mistag.setConstant(True) tagOmegaList += [ [mistag] ] else: print '==> Non-trivial tagging' if singletagger: print '==> Single tagger' p0B.append(WS(ws,RooRealVar('p0_B_OS', 'p0_B_OS', myconfigfile["TaggingCalibration"]["OS"]["p0"], 0.0, 0.5))) p1B.append(WS(ws,RooRealVar('p1_B_OS', 'p1_B_OS', myconfigfile["TaggingCalibration"]["OS"]["p1"], 0.5, 1.5))) avB.append(WS(ws,RooRealVar('av_B_OS', 'av_B_OS', myconfigfile["TaggingCalibration"]["OS"]["average"]))) #setConstantIfSoConfigured(p0B[0],myconfigfile) #setConstantIfSoConfigured(p1B[0],myconfigfile) mistagCalibB.append(WS(ws,MistagCalibration("mistagCalib_B_OS", "mistagCalib_B_OS", mistag, p0B[0], p1B[0], avB[0]))) p0Bbar.append(WS(ws,RooRealVar('p0_Bbar_OS', 'p0_B_OS', myconfigfile["TaggingCalibration"]["OS"]["p0Bar"], 0.0, 0.5))) p1Bbar.append(WS(ws,RooRealVar('p1_Bbar_OS', 'p1_B_OS', myconfigfile["TaggingCalibration"]["OS"]["p1Bar"], 0.5, 1.5))) avBbar.append(WS(ws,RooRealVar('av_Bbar_OS', 'av_B_OS', myconfigfile["TaggingCalibration"]["OS"]["averageBar"]))) #setConstantIfSoConfigured(p0Bbar[0],myconfigfile) #setConstantIfSoConfigured(p1Bbar[0],myconfigfile) mistagCalibBbar.append(WS(ws,MistagCalibration("mistagCalib_Bbar_OS", "mistagCalib_Bbar_OS", mistag, p0Bbar[0], p1Bbar[0], avBbar[0]))) tagOmegaList += [ [mistagCalibB[0],mistagCalibBbar[0]] ] else: print '==> Combining more taggers' i=0 for tg in ["OS","SS","OS+SS"]: p0B.append(WS(ws,RooRealVar('p0_B_'+tg, 'p0_B_'+tg, myconfigfile["TaggingCalibration"][tg]["p0"], 0., 0.5 ))) p1B.append(WS(ws,RooRealVar('p1_B_'+tg, 'p1_B_'+tg, myconfigfile["TaggingCalibration"][tg]["p1"], 0.5, 1.5 ))) avB.append(WS(ws,RooRealVar('av_B_'+tg, 'av_B_'+tg, myconfigfile["TaggingCalibration"][tg]["average"]))) #setConstantIfSoConfigured(p0B[i],myconfigfile) #setConstantIfSoConfigured(p1B[i],myconfigfile) mistagCalibB.append(WS(ws,MistagCalibration("mistagCalib_B_"+tg, "mistagCalib_B_"+tg, mistag, p0B[i], p1B[i], avB[i]))) p0Bbar.append(WS(ws,RooRealVar('p0_Bbar_'+tg, 'p0_Bbar_'+tg, myconfigfile["TaggingCalibration"][tg]["p0Bar"], 0., 0.5 ))) p1Bbar.append(WS(ws,RooRealVar('p1_Bbar_'+tg, 'p1_Bbar_'+tg, myconfigfile["TaggingCalibration"][tg]["p1Bar"], 0.5, 1.5 ))) avBbar.append(WS(ws,RooRealVar('av_Bbar_'+tg, 'av_Bbar_'+tg, myconfigfile["TaggingCalibration"][tg]["averageBar"]))) #setConstantIfSoConfigured(p0Bbar[i],myconfigfile) #setConstantIfSoConfigured(p1Bbar[i],myconfigfile) mistagCalibBbar.append(WS(ws,MistagCalibration("mistagCalib_Bbar_"+tg, "mistagCalib_Bbar_"+tg, mistag, p0Bbar[i], p1Bbar[i], avBbar[i]))) tagOmegaList += [ [mistagCalibB[i],mistagCalibBbar[i]] ] i = i+1 print '==> Tagging calibration lists:' print tagOmegaList mistagWork = GeneralUtils.LoadWorkspace(TString(myconfigfile["Toys"]["fileNameMistag"]), TString(myconfigfile["Toys"]["Workspace"]), debug) mistagPDF = [] mistagPDFList = [] if notagging: mistagPDFList = None else: for i in range(0,3): mistagPDF.append(WS(ws,Bs2Dsh2011TDAnaModels.GetRooHistPdfFromWorkspace(mistagWork, TString(myconfigfile["Toys"]["MistagTempName"][i]), debug))) if not singletagger: mistagPDFList.append(mistagPDF[i]) if singletagger: mistagPDFList.append(mistagPDF[0]) observables.add( mistag ) print "==========================================================" print "Summary of observables" print "==========================================================" observables.Print("v") # Total time PDF # --------------------------- print "==========================================================" print "Creating time PDF" print "==========================================================" timePDFplus = [] timePDFminus = [] timePDF = [] adet_plus = WS(ws,RooConstVar('adet_plus','+1',1.0)) id_plus = WS(ws, RooCategory('id_plus','Pi+')) id_plus.defineType('h+',1) adet_minus = WS(ws,RooConstVar('adet_minus','-1',-1.0)) id_minus = WS(ws, RooCategory('id_minus','Pi-')) id_minus.defineType('h-',-1) for i in range(0,bound): utils = GenTimePdfUtils(myconfigfile, ws, gammad, deltaGammad, deltaMd, singletagger, notagging, noprodasymmetry, notagasymmetries, debug) timePDFplus.append(buildBDecayTimePdf(myconfigfile, "Signal_DmPip", ws, time, terr, tag, id_plus, tagOmegaList, utils['tagEff'], gammad, deltaGammad, deltaMd, utils['C'], utils['D'], utils['Dbar'], utils['S'], utils['Sbar'], trm, tacc, terrpdf[i] if terrpdf != None else terrpdf, mistagPDFList, mistag, None, None, utils['aProd'], adet_plus, utils['aTagEff'])) timePDFminus.append(buildBDecayTimePdf(myconfigfile, "Signal_DpPim", ws, time, terr, tag, id_minus, tagOmegaList, utils['tagEff'], gammad, deltaGammad, deltaMd, utils['C'], utils['D'], utils['Dbar'], utils['S'], utils['Sbar'], trm, tacc, terrpdf[i] if terrpdf != None else terrpdf, mistagPDFList, mistag, None, None, utils['aProd'], adet_minus, utils['aTagEff'])) timePDF.append(WS(ws,RooSimultaneous("Signal", "Signal", id))) timePDF[i].addPdf(timePDFplus[i],"h+") timePDF[i].addPdf(timePDFminus[i],"h-") totPDF = [] for i in range(0,bound): totPDF.append(timePDF[i]) # Fitting # --------------------------- print "==========================================================" print "Fixing what is required for the fit" print "==========================================================" from B2DXFitters.utils import setConstantIfSoConfigured setConstantIfSoConfigured(myconfigfile, totPDF[0]) print "==========================================================" print "Fitting" print "==========================================================" if not Blinding and toys: #Unblind yourself if nosWeights: myfitresult = totPDF[0].fitTo(dataA, RooFit.Save(1), RooFit.Optimize(2), RooFit.Strategy(2),\ RooFit.Verbose(True), RooFit.SumW2Error(False), RooFit.Timer(True), RooFit.Offset(True))#, #RooFit.ExternalConstraints(constList)) else: myfitresult = totPDF[0].fitTo(dataWA, RooFit.Save(1), RooFit.Optimize(2), RooFit.Strategy(2), RooFit.Timer(True),\ RooFit.Verbose(True), RooFit.SumW2Error(True), RooFit.Timer(True), RooFit.Offset(True))#, #RooFit.ExternalConstraints(constList)) qual = myfitresult.covQual() status = myfitresult.status() print 'MINUIT status is ', myfitresult.status() print "---> Fit done; printing results" myfitresult.Print("v") myfitresult.correlationMatrix().Print() myfitresult.covarianceMatrix().Print() floatpar = myfitresult.floatParsFinal() initpar = myfitresult.floatParsInit() else : #Don't myfitresult = totPDF[0].fitTo(dataWA, RooFit.Save(1), RooFit.Optimize(2), RooFit.Strategy(2),\ RooFit.SumW2Error(True), RooFit.PrintLevel(-1), RooFit.Offset(True), #RooFit.ExternalConstraints(constList), RooFit.Timer(True)) print "==========================================================" print "Fit done; saving output workspace" print "==========================================================" workout = RooWorkspace("workspace","workspace") if nosWeights: getattr(workout,'import')(dataWA) else: getattr(workout,'import')(dataWA) getattr(workout,'import')(totPDF[0]) getattr(workout,'import')(myfitresult) saveNameTS = TString(wsname) workout.Print() GeneralUtils.SaveWorkspace(workout,saveNameTS, debug) #Save fit results for pull plots if not Blinding and toys: from B2DXFitters.FitResultGrabberUtils import CreatePullTree as CreatePullTree CreatePullTree(fileNamePull, myfitresult, 'status')
tree1.GetBranch(varName).GetTitle(), tree1.GetMinimum(varName), tree1.GetMaximum(varName)) ] varRenamedList += [RooFit.RenameVariable(varName, tupleDict[varName])] #RooFit.RenameVariable(varName, tupleDict[varName]); #varList[i].SetName(tupleDict.keys()[i]); #tupleDataSet = RooDataSet("treeData","treeData",tree1,RooArgSet(*varList)); weightvar = RooRealVar("weight", "weight", -1e7, 1e7) tupleDataSet = RooDataSet("tupleDataSet", "tupleDataSet", RooArgSet(*varList), RooFit.Import(tree1), RooFit.WeightVar(weightvar)) ws = RooWorkspace('ws_FIT') tupleDataSet = WS(ws, tupleDataSet, varRenamedList) tupleDataSet.Print() sys.exit(0) #qt needs to be a category? # Manuel's shit... #weightvar = RooRealVar("weight", "weight", -1e7, 1e7) #tupleDataSet = RooDataSet("tupleDataSet", "tupleDataSet", # RooArgSet(treetime, treeqt, treeqf, treeeta), # RooFit.Import(tree1), RooFit.WeightVar(weightvar)) #tupleDS = WS(ws, tupleDS, [ # RooFit.RenameVariable("Bs_ctau", "time"), ... ]) # # note: do not forget to add to fitTo options: RooFit.SumW2Error(True) #ROOT.SetOwnership(tupleDataSet,False); #tupleDataSet.get().find(varName).Print();
import random #random.seed(SEED); genEtaList = TList(); for i in xrange(NUMCAT): # use workspace for fit pdf in such a simple fit fitconfig = copy.deepcopy(config1) fitconfig['Context'] = 'FIT%u' % i fitconfig['NBinsAcceptance'] = 0 fitpdf = buildTimePdf(fitconfig) #ds = WS(fitpdf['ws'],ds); # add data set to fitting workspace ds1 = WS(fitpdf['ws'], dspercat[i]) print 72 * "#" print "WS:" + str(fitpdf["ws"]) print "PDF:" + str(fitpdf["pdf"]) print "OBS:" + str(fitpdf["obs"]) print "DS:" + str(ds1) fitpdf['ws'].Print("v") fitpdf['pdf'].Print("v") ds1.Print("v") mistag = fitpdf['ws'].obj("mistag") aveta = etaAvgList.At(i).getValV(); mistag.setVal(aveta); mistag.setError(min([0.5 / NUMCAT / sqrt(12), abs(aveta) * 0.5, abs(aveta - 0.5) * 0.5])) mistag.Print("v") print 72 * "#"
def buildTimePdf(config): """ build time pdf, return pdf and associated data in dictionary """ from B2DXFitters.WS import WS print 'CONFIGURATION' for k in sorted(config.keys()): print ' %32s: %32s' % (k, config[k]) # start building the fit ws = RooWorkspace('ws_%s' % config['Context']) one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) # start by defining observables time = WS(ws, RooRealVar('time', 'time [ps]', 0.3, 15.0)) qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) qt = WS(ws, RooCategory('qt', 'tagging decision')) qt.defineType('B+', +1) qt.defineType('Untagged', 0) qt.defineType('B-', -1) # now other settings Gamma = WS(ws, RooRealVar('Gamma', 'Gamma', 0.661)) # ps^-1 DGamma = WS(ws, RooRealVar('DGamma', 'DGamma', 0.106)) # ps^-1 Dm = WS(ws, RooRealVar('Dm', 'Dm', 17.719)) # ps^-1 # HACK (1/2): be careful about lower bound on eta, since mistagpdf below # is zero below a certain value - generation in accept/reject would get # stuck eta = WS(ws, RooRealVar('eta', 'eta', 0.35, 0., 0.5)) mistag = WS(ws, RooRealVar('mistag', 'mistag', 0.35, 0.0, 0.5)) tageff = WS(ws, RooRealVar('tageff', 'tageff', 1.0)) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', 0.039)) #CHANGE THIS LATER # fit average mistag # add mistagged #ge rid of untagged events by putting restriction on qf or something when reduceing ds # now build the PDF from B2DXFitters.timepdfutils import buildBDecayTimePdf from B2DXFitters.resmodelutils import getResolutionModel from B2DXFitters.acceptanceutils import buildSplineAcceptance if 'GEN' in config['Context']: obs = [qf, qt, time, eta] else: obs = [qf, qt, time] acc, accnorm = buildSplineAcceptance( ws, time, 'Bs2DsPi_accpetance', config['SplineAcceptance']['KnotPositions'], config['SplineAcceptance']['KnotCoefficients'][config['Context'][0:3]], 'FIT' in config['Context']) # float for fitting if 'GEN' in config['Context']: acc = accnorm # use normalised acceptance for generation # get resolution model resmodel, acc = getResolutionModel(ws, config, time, timeerr, acc) if 'GEN' in config['Context']: # build a (mock) mistag distribution mistagpdfparams = {} # start with parameters of mock distribution for sfx in ('omega0', 'omegaavg', 'f'): mistagpdfparams[sfx] = WS( ws, RooRealVar('Bs2DsPi_mistagpdf_%s' % sfx, 'Bs2DsPi_mistagpdf_%s' % sfx, config['TrivialMistagParams'][sfx])) # build mistag pdf itself mistagpdf = WS( ws, MistagDistribution('Bs2DsPi_mistagpdf', 'Bs2DsPi_mistagpdf', eta, mistagpdfparams['omega0'], mistagpdfparams['omegaavg'], mistagpdfparams['f'])) mistagcalibparams = {} # start with parameters of calibration for sfx in ('p0', 'p1', 'etaavg'): mistagcalibparams[sfx] = WS( ws, RooRealVar('Bs2DsPi_mistagcalib_%s' % sfx, 'Bs2DsPi_mistagpdf_%s' % sfx, config['MistagCalibParams'][sfx])) for sfx in ('p0', 'p1'): # float calibration paramters mistagcalibparams[sfx].setConstant(False) mistagcalibparams[sfx].setError(0.1) # build mistag pdf itself omega = WS( ws, MistagCalibration('Bs2DsPi_mistagcalib', 'Bs2DsPi_mistagcalib', eta, mistagcalibparams['p0'], mistagcalibparams['p1'], mistagcalibparams['etaavg'])) # build the time pdf if 'GEN' in config['Context']: pdf = buildBDecayTimePdf(config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [[omega]], [tageff], Gamma, DGamma, Dm, C=one, D=zero, Dbar=zero, S=zero, Sbar=zero, timeresmodel=resmodel, acceptance=acc, timeerrpdf=None, mistagpdf=[mistagpdf], mistagobs=eta) else: adet = WS(ws, RooRealVar('adet', 'adet', 0., -.15, .15)) aprod = WS(ws, RooRealVar('aprod', 'aprod', 0., -.15, .15)) adet.setError(0.005) aprod.setError(0.005) pdf = buildBDecayTimePdf(config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [[eta]], [tageff], Gamma, DGamma, Dm, C=one, D=zero, Dbar=zero, S=zero, Sbar=zero, timeresmodel=resmodel, acceptance=acc, timeerrpdf=None, aprod=aprod, adet=adet) return { # return things 'ws': ws, 'pdf': pdf, 'obs': obs }
import copy # FIXME: need to deep-copy the config dictionary, and need to disable a few # tweaks that speed up fitting during generation (because they waste time there) genconfig = copy.deepcopy(config) genconfig['Context'] = 'GEN' genconfig['NBinsAcceptance'] = 0 genconfig['NBinsProperTimeErr'] = 0 genconfig['ParameteriseIntegral'] = False genpdf = buildTimePdf(genconfig) # generate 150K events #print '150K' #ds = genpdf['pdf'].generate(RooArgSet(*genpdf['obs']), 150000, RooFit.Verbose()) from B2DXFitters import datasetio weight = WS(genpdf['ws'], RooRealVar(weightVarName, 'weight', -1e9, 1e9)) weight.Print() for v in genpdf['obs']: v.Print('v') obsset = RooArgSet(weight, *genpdf['obs']) ds = datasetio.readDataSet(genconfig, genpdf['ws'], obsset) #ds.Print(); #sys.exit(0); #saveEta(ds); # HACK (2/2): restore correct eta range after generation ds.get().find('eta').setRange(0.0, 0.5) ds.Print('v')
RooAbsReal.defaultIntegratorConfig().setEpsAbs(1e-9) RooAbsReal.defaultIntegratorConfig().setEpsRel(1e-9) RooAbsReal.defaultIntegratorConfig().getConfigSection( 'RooAdaptiveGaussKronrodIntegrator1D').setCatLabel( 'method', '15Points') RooAbsReal.defaultIntegratorConfig().getConfigSection( 'RooAdaptiveGaussKronrodIntegrator1D').setRealValue('maxSeg', 1000) RooAbsReal.defaultIntegratorConfig().method1D().setLabel( 'RooAdaptiveGaussKronrodIntegrator1D') RooAbsReal.defaultIntegratorConfig().method1DOpen().setLabel( 'RooAdaptiveGaussKronrodIntegrator1D') from B2DXFitters.WS import WS ws = RooWorkspace('ws_FIT') tupleDataSet = WS(ws, tupleDataSet, varRenamedList) #tupleDataSet = tupleDataSet.Print() config['Context'] = 'FIT' fitpdf = buildTimePdf1(config) #ws = fitpdf['ws']; tupleDataSet = WS(ws, tupleDataSet) tupleDataSet = WS(fitpdf['ws'], tupleDataSet) # set constant what is supposed to be constant from B2DXFitters.utils import setConstantIfSoConfigured setConstantIfSoConfigured(config, fitpdf['pdf'])
def readDataSet( config, # configuration dictionary ws, # workspace to which to add data set observables, # observables rangeName = None # name of range to clip dataset to ): """ read data set from given Ntuple (or a RooDataSet inside a workspace) into a RooDataSet arguments: config -- configuration dictionary (see below for relevant keys) ws -- workspace into which to import data from tuple observables -- RooArgSet containing the observables to be read rangeName -- optional, can be the name of a range of one observable, if the data read from the tuple needs to be explicitly clipped to that range for some reason the routine returns the data set that has been read in and stored inside ws. relevant configuration dictionary keys: 'DataFileName' -- file name of data file from which to read ntuple or data set 'DataSetNames' -- name (TTree or RooDataSet) of the data set to be read; more than one can be given in a dictionary, providing a mapping between the sample name and the data set to be read (see below for an explanation) 'DataWorkSpaceName' -- name of workspace to read data from (if any - leave None for reading tuples) 'DataSetCuts' -- cuts to apply to data sets on import - anything that RooDataSet.reduce will understand is permissible here (set to None to not apply any cuts on import) 'DataSetVarNameMapping' -- mapping from variable names in set of observables to what these variable names are called in the tuple/workspace to be imported "special" observable names: The routine treats some variable names special on import based on their likely meaning: 'weight' -- this variable name must be used to read in (s)weighted events 'qf' -- final state charge (e.g. +1 for K+ vs -1 for K-); only the sign is important here, and the import code enforces that 'qt' -- tagging decision; this can be any integer number (positive or negative); if the tuple should contain a float/double with that information, it is rounded appropriately 'mistag' -- predicted mistag; the import code makes sure that events with qt == 0 have mistag = 0.5 'sample' -- if more than one final state is studied (e.g. Ds final states phipi, kstk, nonres, kpipi, pipipi), the events for these subsamples often reside in different samples; therefore the config dictionary entry 'DataSetNames' can contain a dictionary which maps the category labels (phipi etc) to the names of the data samples in the ROOT file/workspace The config dict key 'DataSetVarNameMapping' contains a useful feature: Instead of providing a one-to-one-mapping of observables to tuple/data set names, an observable can be calculated from more than one tuple column. This is useful e.g. to convert a tuple that's stored the tagging decision as untagged/mixed/unmixed, or to sum up sweights for the different samples. Most simple formulae should be supported, but constants in scientific notation (1.0E+00) are not for now (until someone write a better parser for this). Example: @code seed = 42 # it's easy to modify the filename depending on the seed number configdict = { # file to read from 'DataFileName': '/some/path/to/file/with/toy_%04d.root' % seed, # data set is in a workspace already 'DataWorkSpaceName': 'FitMeToolWS', # name of data set inside workspace 'DataSetNames': 'combData', # mapping between observables and variable name in data set 'DataSetVarNameMapping': { 'sample': 'sample', 'mass': 'lab0_MassFitConsD_M', 'pidk': 'lab1_PIDK', 'dsmass': 'lab2_MM', 'time': 'lab0_LifetimeFit_ctau', 'timeerr': 'lab0_LifetimeFit_ctauErr', 'mistag': 'tagOmegaComb', 'qf': 'lab1_ID', 'qt': ' tagDecComb', # sweights need to be combined from different branches in this # case, only one of the branches is ever set to a non-zero value, # depending on which subsample the event is in 'weight': ('nSig_both_nonres_Evts_sw+nSig_both_phipi_Evts_sw+' 'nSig_both_kstk_Evts_sw+nSig_both_kpipi_Evts_sw+' 'nSig_both_pipipi_Evts_sw') } } # define all observables somewhere, and put the into a RooArgSet called obs # import observables in to a workspace saved in ws # now read the data set data = readDataSet(configdict, ws, observables) @endcode """ from ROOT import ( TFile, RooWorkspace, RooRealVar, RooCategory, RooBinningCategory, RooUniformBinning, RooMappedCategory, RooDataSet, RooArgSet, RooArgList ) import sys, math # local little helper routine def round_to_even(x): xfl = int(math.floor(x)) rem = x - xfl if rem < 0.5: return xfl elif rem > 0.5: return xfl + 1 else: if xfl % 2: return xfl + 1 else: return xfl # another small helper routine def tokenize(s, delims = '+-*/()?:'): # FIXME: this goes wrong for numerical constants like 1.4e-3 # proposed solution: regexp for general floating point constants, # replace occurences of matches with empty string delims = [ c for c in delims ] delims.insert(0, None) for delim in delims: tmp = s.split(delim) tmp = list(set(( s + ' ' for s in tmp))) s = ''.join(tmp) tmp = list(set(s.split(None))) return tmp # figure out which names from the mapping we need - look at the observables names = () for n in config['DataSetVarNameMapping'].keys(): if None != observables.find(n): names += (n,) # build RooArgSets and maps with source and destination variables dmap = { } for k in names: dmap[k] = observables.find(k) if None in dmap.values(): raise NameError('Some variables not found in destination: %s' % str(dmap)) dset = RooArgSet() for v in dmap.values(): dset.add(v) if None != dset.find('weight'): # RooFit insists on weight variable being first in set tmpset = RooArgSet() tmpset.add(dset.find('weight')) it = dset.fwdIterator() while True: obj = it.next() if None == obj: break if 'weight' == obj.GetName(): continue tmpset.add(obj) dset = tmpset del tmpset ddata = RooDataSet('agglomeration', 'of positronic circuits', dset, 'weight') else: ddata = RooDataSet('agglomeration', 'of positronic circuits', dset) # open file with data sets f = TFile(config['DataFileName'], 'READ') # get workspace fws = f.Get(config['DataWorkSpaceName']) ROOT.SetOwnership(fws, True) if None == fws or not fws.InheritsFrom('RooWorkspace'): # ok, no workspace, so try to read a tree of the same name and # synthesize a workspace from ROOT import RooWorkspace, RooDataSet, RooArgList fws = RooWorkspace(config['DataWorkSpaceName']) iset = RooArgSet() addiset = RooArgList() it = observables.fwdIterator() while True: obj = it.next() if None == obj: break name = config['DataSetVarNameMapping'][obj.GetName()] vnames = tokenize(name) if len(vnames) > 1 and not obj.InheritsFrom('RooAbsReal'): print 'Error: Formulae not supported for categories' return None if obj.InheritsFrom('RooAbsReal'): if 1 == len(vnames): # simple case, just add variable var = WS(fws, RooRealVar(name, name, -sys.float_info.max, sys.float_info.max)) iset.addClone(var) else: # complicated case - add a bunch of observables, and # compute something in a RooFormulaVar from ROOT import RooFormulaVar args = RooArgList() for n in vnames: try: # skip simple numerical factors float(n) except: var = iset.find(n) if None == var: var = WS(fws, RooRealVar(n, n, -sys.float_info.max, sys.float_info.max)) iset.addClone(var) args.add(iset.find(n)) var = WS(fws, RooFormulaVar(name, name, name, args)) addiset.addClone(var) else: for dsname in ((config['DataSetNames'], ) if type(config['DataSetNames']) == str else config['DataSetNames']): break leaf = f.Get(dsname).GetLeaf(name) if None == leaf: leaf = f.Get(dsname).GetLeaf(name + '_idx') if leaf.GetTypeName() in ( 'char', 'unsigned char', 'Char_t', 'UChar_t', 'short', 'unsigned short', 'Short_t', 'UShort_t', 'int', 'unsigned', 'unsigned int', 'Int_t', 'UInt_t', 'long', 'unsigned long', 'Long_t', 'ULong_t', 'Long64_t', 'ULong64_t', 'long long', 'unsigned long long'): var = WS(fws, RooCategory(name, name)) tit = obj.typeIterator() ROOT.SetOwnership(tit, True) while True: tobj = tit.Next() if None == tobj: break var.defineType(tobj.GetName(), tobj.getVal()) else: var = WS(fws, RooRealVar(name, name, -sys.float_info.max, sys.float_info.max)) iset.addClone(var) for dsname in ((config['DataSetNames'], ) if type(config['DataSetNames']) == str else config['DataSetNames']): tmpds = WS(fws, RooDataSet(dsname, dsname,f.Get(dsname), iset), []) if 0 != addiset.getSize(): # need to add columns with RooFormulaVars tmpds.addColumns(addiset) del tmpds # local data conversion routine def doIt(config, rangeName, dsname, sname, names, dmap, dset, ddata, fws): sdata = fws.obj(dsname) if None == sdata: return 0 if None != config['DataSetCuts']: # apply any user-supplied cuts newsdata = sdata.reduce(config['DataSetCuts']) ROOT.SetOwnership(newsdata, True) del sdata sdata = newsdata del newsdata sset = sdata.get() smap = { } for k in names: smap[k] = sset.find(config['DataSetVarNameMapping'][k]) if 'sample' in smap.keys() and None == smap['sample'] and None != sname: smap.pop('sample') dmap['sample'].setLabel(sname) if None in smap.values(): raise NameError('Some variables not found in source: %s' % str(smap)) # # additional complication: toys save decay time in ps, data is in nm # # figure out which time conversion factor to use # timeConvFactor = 1e9 / 2.99792458e8 # meantime = sdata.mean(smap['time']) # if ((dmap['time'].getMin() <= meantime and # meantime <= dmap['time'].getMax() and config['IsToy']) or # not config['IsToy']): # timeConvFactor = 1. # print 'DEBUG: Importing data sample meantime = %f, timeConvFactor = %f' % ( # meantime, timeConvFactor) timeConvFactor = 1. # loop over all entries of data set ninwindow = 0 if None != sname: sys.stdout.write('Dataset conversion and fixup: %s: progress: ' % sname) else: sys.stdout.write('Dataset conversion and fixup: progress: ') for i in xrange(0, sdata.numEntries()): sdata.get(i) if 0 == i % 128: sys.stdout.write('*') vals = { } for vname in smap.keys(): obj = smap[vname] if obj.InheritsFrom('RooAbsReal'): val = obj.getVal() vals[vname] = val else: val = obj.getIndex() vals[vname] = val # first fixup: apply time/timeerr conversion factor if 'time' in dmap.keys(): vals['time'] *= timeConvFactor if 'timeerr' in dmap.keys(): vals['timeerr'] *= timeConvFactor # second fixup: only sign of qf is important if 'qf' in dmap.keys(): vals['qf'] = 1 if vals['qf'] > 0.5 else (-1 if vals['qf'] < -0.5 else 0.) # third fixup: untagged events are forced to 0.5 mistag if ('qt' in dmap.keys() and 'mistag' in dmap.keys() and 0 == vals['qt']): vals['mistag'] = 0.5 # apply cuts inrange = True for vname in dmap.keys(): if not dmap[vname].InheritsFrom('RooAbsReal'): continue # no need to cut on untagged events if 'mistag' == vname and 0 == vals['qt']: continue if None != rangeName and dmap[vname].hasRange(rangeName): if (dmap[vname].getMin(rangeName) > vals[vname] or vals[vname] >= dmap[vname].getMax(rangeName)): inrange = False break else: if (dmap[vname].getMin() > vals[vname] or vals[vname] >= dmap[vname].getMax()): inrange = False break # skip cuts which are not within the allowed range if not inrange: continue # copy values over, doing real-category conversions as needed for vname in smap.keys(): dvar, svar = dmap[vname], vals[vname] if dvar.InheritsFrom('RooAbsRealLValue'): if float == type(svar): dvar.setVal(svar) elif int == type(svar): dvar.setVal(svar) elif dvar.InheritsFrom('RooAbsCategoryLValue'): if int == type(svar): dvar.setIndex(svar) elif float == type(svar): dvar.setIndex(round_to_even(svar)) if 'weight' in dmap: ddata.add(dset, vals['weight']) else: ddata.add(dset) ninwindow = ninwindow + 1 del sdata sys.stdout.write(', done - %d events\n' % ninwindow) return ninwindow ninwindow = 0 if type(config['DataSetNames']) == str: ninwindow += doIt(config, rangeName, config['DataSetNames'], None, names, dmap, dset, ddata, fws) else: for sname in config['DataSetNames'].keys(): ninwindow += doIt(config, rangeName, config['DataSetNames'][sname], sname, names, dmap, dset, ddata, fws) # free workspace and close file del fws f.Close() del f # put the new dataset into our proper workspace ddata = WS(ws, ddata, []) # for debugging if config['Debug']: ddata.Print('v') if 'qt' in dmap.keys(): data.table(dmap['qt']).Print('v') if 'qf' in dmap.keys(): data.table(dmap['qf']).Print('v') if 'qf' in dmap.keys() and 'qt' in dmap.keys(): data.table(RooArgSet(dmap['qt'], dmap['qf'])).Print('v') if 'sample' in dmap.keys(): data.table(dmap['sample']).Print('v') # all done, return Data to the bridge return ddata
def buildSplineAcceptance( ws, # workspace into which to import time, # time variable pfx, # prefix to be used in names knots, # knots coeffs, # acceptance coefficients floatParams = False, # float acceptance parameters debug = False # debug printout ): """ build a spline acceptance function ws -- workspace into which to import acceptance functions time -- time observable pfx -- prefix (mode name) from which to build object names knots -- list of knot positions coeffs -- spline coefficients floatParams -- if True, spline acceptance parameters will be floated debug -- if True, print some debugging output returns a pair of acceptance functions, first the unnormalised one for fitting, then the normalised one for generation The minimum and maximum of the range of the time variable implicitly defines the position of the first and last knot. The other knot positions are passed in knots. Conversely, the coeffs parameter records the height of the sline at all but the last two knot positions. The next to last knot coefficient is fixed to 1.0, thus fixing the overall scale of the acceptance function. The spline coefficient for the last knot is fixed by extrapolating linearly from the two knots before; this prevents statistical fluctuations at the low stats high lifetime end of the spectrum to curve the spline. """ # build acceptance function from copy import deepcopy myknots = deepcopy(knots) mycoeffs = deepcopy(coeffs) from ROOT import (RooBinning, RooArgList, RooPolyVar, RooCubicSplineFun, RooConstVar, RooProduct, RooRealVar) if (len(myknots) != len(mycoeffs) or 0 >= min(len(myknots), len(mycoeffs))): raise ValueError('ERROR: Spline knot position list and/or coefficient' 'list mismatch') one = WS(ws, RooConstVar('one', '1', 1.0)) # create the knot binning knotbinning = WS(ws, RooBinning(time.getMin(), time.getMax(), '%s_knotbinning' % pfx)) for v in myknots: knotbinning.addBoundary(v) knotbinning.removeBoundary(time.getMin()) knotbinning.removeBoundary(time.getMax()) knotbinning.removeBoundary(time.getMin()) knotbinning.removeBoundary(time.getMax()) oldbinning, lo, hi = time.getBinning(), time.getMin(), time.getMax() time.setBinning(knotbinning, '%s_knotbinning' % pfx) time.setBinning(oldbinning) time.setRange(lo, hi) del knotbinning del oldbinning del lo del hi # create the knot coefficients coefflist = RooArgList() i = 0 for v in mycoeffs: if floatParams: coefflist.add(WS(ws, RooRealVar('%s_SplineAccCoeff%u' % (pfx, i), 'v_{%u}' % (i+1), v, 0., 3.))) else: coefflist.add(WS(ws, RooConstVar('%s_SplineAccCoeff%u' % (pfx, i), 'v_{%u}' % (i+1), v))) i = i + 1 del mycoeffs coefflist.add(one) i = i + 1 myknots.append(time.getMax()) myknots.reverse() fudge = (myknots[0] - myknots[1]) / (myknots[2] - myknots[1]) lastmycoeffs = RooArgList( WS(ws, RooConstVar('%s_SplineAccCoeff%u_coeff0' % (pfx, i), '%s_SplineAccCoeff%u_coeff0' % (pfx, i), 1. - fudge)), WS(ws, RooConstVar('%s_SplineAccCoeff%u_coeff1' % (pfx, i), '%s_SplineAccCoeff%u_coeff1' % (pfx, i), fudge))) del myknots coefflist.add(WS(ws, RooPolyVar( '%s_SplineAccCoeff%u' % (pfx, i), 'v_{%u}' % (i+1), coefflist.at(coefflist.getSize() - 2), lastmycoeffs))) del i if debug: print 'DEBUG: Spline Coeffs: %s' % str([ coefflist.at(i).getVal() for i in xrange(0, coefflist.getSize()) ]) # create the spline itself tacc = WS(ws, RooCubicSplineFun('%s_SplineAcceptance' % pfx, '%s_SplineAcceptance' % pfx, time, '%s_knotbinning' % pfx, coefflist)) del lastmycoeffs if not floatParams: # make sure the acceptance is <= 1 for generation m = max([coefflist.at(j).getVal() for j in xrange(0, coefflist.getSize())]) c = WS(ws, RooConstVar('%s_SplineAccNormCoeff' % pfx, '%s_SplineAccNormCoeff' % pfx, 0.99 / m)) tacc_norm = WS(ws, RooProduct('%s_SplineAcceptanceNormalised' % pfx, '%s_SplineAcceptanceNormalised' % pfx, RooArgList(tacc, c))) del c del m else: tacc_norm = None # not supported when floating del coefflist return tacc, tacc_norm
ds = genpdf['pdf'].generate(RooArgSet(*genpdf['obs']), 150000, RooFit.Verbose()) # HACK (2/2): restore correct eta range after generation ds.get().find('eta').setRange(0.0, 0.5) ds.Print('v') for o in genpdf['obs']: if not o.InheritsFrom('RooAbsCategory'): continue ds.table(o).Print('v') # use workspace for fit pdf in such a simple fit config['Context'] = 'FIT' config['NBinsAcceptance'] = 0 fitpdf = buildTimePdf(config) # add data set to fitting workspace ds = WS(fitpdf['ws'], ds) # set constant what is supposed to be constant from B2DXFitters.utils import setConstantIfSoConfigured setConstantIfSoConfigured(config, fitpdf['pdf']) # set up fitting options fitopts = [ RooFit.Timer(), RooFit.Save(), RooFit.Strategy(config['FitConfig']['Strategy']), RooFit.Optimize(config['FitConfig']['Optimize']), RooFit.Offset(config['FitConfig']['Offset']), RooFit.NumCPU(config['FitConfig']['NumCPU']) ]
def buildTimePdf(config): """ build time pdf, return pdf and associated data in dictionary """ from B2DXFitters.WS import WS print 'CONFIGURATION' for k in sorted(config.keys()): print ' %32s: %32s' % (k, config[k]) # start building the fit ws = RooWorkspace('ws_%s' % config['Context']) one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) # start by defining observables time = WS(ws, RooRealVar('time', 'time [ps]', 0.2, 15.0)) qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) qt = WS(ws, RooCategory('qt', 'tagging decision')) qt.defineType('B+', +1) qt.defineType('Untagged', 0) qt.defineType('B-', -1) # now other settings Gamma = WS(ws, RooRealVar('Gamma', 'Gamma', 0.661)) # ps^-1 DGamma = WS(ws, RooRealVar('DGamma', 'DGamma', 0.106)) # ps^-1 Dm = WS(ws, RooRealVar('Dm', 'Dm', 17.719)) # ps^-1 # HACK (1/2): be careful about lower bound on eta, since mistagpdf below # is zero below a certain value - generation in accept/reject would get # stuck eta = WS( ws, RooRealVar( 'eta', 'eta', 0.35, 0.0 if 'FIT' in config['Context'] else (1. + 1e-5) * max(0.0, config['TrivialMistagParams']['omega0']), 0.5)) tageff = WS(ws, RooRealVar('tageff', 'tageff', 0.60, 0.0, 1.0)) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', 0.040, 0.001, 0.100)) # now build the PDF from B2DXFitters.timepdfutils import buildBDecayTimePdf from B2DXFitters.resmodelutils import getResolutionModel from B2DXFitters.acceptanceutils import buildSplineAcceptance obs = [qt, qf, time, eta, timeerr] acc, accnorm = buildSplineAcceptance( ws, time, 'Bs2DsPi_accpetance', config['SplineAcceptance']['KnotPositions'], config['SplineAcceptance']['KnotCoefficients'][config['Context']], 'FIT' in config['Context']) # float for fitting if 'GEN' in config['Context']: acc = accnorm # use normalised acceptance for generation # get resolution model resmodel, acc = getResolutionModel(ws, config, time, timeerr, acc) # build a (mock) mistag distribution mistagpdfparams = {} # start with parameters of mock distribution for sfx in ('omega0', 'omegaavg', 'f'): mistagpdfparams[sfx] = WS( ws, RooRealVar('Bs2DsPi_mistagpdf_%s' % sfx, 'Bs2DsPi_mistagpdf_%s' % sfx, config['TrivialMistagParams'][sfx])) # build mistag pdf itself mistagpdf = WS( ws, MistagDistribution('Bs2DsPi_mistagpdf', 'Bs2DsPi_mistagpdf', eta, mistagpdfparams['omega0'], mistagpdfparams['omegaavg'], mistagpdfparams['f'])) # build mistag calibration mistagcalibparams = {} # start with parameters of calibration for sfx in ('p0', 'p1', 'etaavg'): mistagcalibparams[sfx] = WS( ws, RooRealVar('Bs2DsPi_mistagcalib_%s' % sfx, 'Bs2DsPi_mistagpdf_%s' % sfx, config['MistagCalibParams'][sfx])) for sfx in ('p0', 'p1'): # float calibration paramters mistagcalibparams[sfx].setConstant(False) mistagcalibparams[sfx].setError(0.1) # build mistag pdf itself omega = WS( ws, MistagCalibration('Bs2DsPi_mistagcalib', 'Bs2DsPi_mistagcalib', eta, mistagcalibparams['p0'], mistagcalibparams['p1'], mistagcalibparams['etaavg'])) # build mock decay time error distribution (~ timeerr^6 * exp(-timerr / # (timerr_av / 7)) terrpdf_shape = WS( ws, RooConstVar('timeerr_ac', 'timeerr_ac', config['DecayTimeResolutionAvg'] / 7.)) terrpdf_truth = WS( ws, RooTruthModel('terrpdf_truth', 'terrpdf_truth', timeerr)) terrpdf_i0 = WS( ws, RooDecay('terrpdf_i0', 'terrpdf_i0', timeerr, terrpdf_shape, terrpdf_truth, RooDecay.SingleSided)) terrpdf_i1 = WS( ws, RooPolynomial('terrpdf_i1', 'terrpdf_i1', timeerr, RooArgList(zero, zero, zero, zero, zero, zero, one), 0)) terrpdf = WS(ws, RooProdPdf('terrpdf', 'terrpdf', terrpdf_i0, terrpdf_i1)) # build the time pdf pdf = buildBDecayTimePdf(config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [[omega]], [tageff], Gamma, DGamma, Dm, C=one, D=zero, Dbar=zero, S=zero, Sbar=zero, timeresmodel=resmodel, acceptance=acc, timeerrpdf=terrpdf, mistagpdf=[mistagpdf], mistagobs=eta) return { # return things 'ws': ws, 'pdf': pdf, 'obs': obs }
'RooAdaptiveGaussKronrodIntegrator1D').setRealValue('maxSeg', 1000) RooAbsReal.defaultIntegratorConfig().method1D().setLabel( 'RooAdaptiveGaussKronrodIntegrator1D') RooAbsReal.defaultIntegratorConfig().method1DOpen().setLabel( 'RooAdaptiveGaussKronrodIntegrator1D') # seed the Random number generator rndm = TRandom3(SEED + 1) RooRandom.randomGenerator().SetSeed(int(rndm.Uniform(4294967295))) del rndm # start building the fit from B2DXFitters.WS import WS ws = RooWorkspace('ws') one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) # start by defining observables time = WS(ws, RooRealVar('time', 'time [ps]', 0.2, 15.0)) qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) qt = WS(ws, RooCategory('qt', 'tagging decision')) qt.defineType( 'B+', +1) qt.defineType('Untagged', 0) qt.defineType( 'B-', -1) # now other settings Gamma = WS(ws, RooRealVar( 'Gamma', 'Gamma', 0.661)) # ps^-1 DGamma = WS(ws, RooRealVar('DGamma', 'DGamma', 0.106)) # ps^-1
# seed the Random number generator rndm = TRandom3(SEED + 1) RooRandom.randomGenerator().SetSeed(int(rndm.Uniform(4294967295))) del rndm # start building the fit from B2DXFitters.WS import WS ws = RooWorkspace('ws') one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) # start by defining observables time = WS(ws, RooRealVar('time', 'time [ps]', 0.2, 15.0)) qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) qt = WS(ws, RooCategory('qt', 'tagging decision')) qt.defineType( 'B+', +1) qt.defineType('Untagged', 0) qt.defineType( 'B-', -1) # now other settings Gamma = WS(ws, RooRealVar( 'Gamma', 'Gamma', 0.661)) # ps^-1 DGamma = WS(ws, RooRealVar('DGamma', 'DGamma', 0.106)) # ps^-1 Dm = WS(ws, RooRealVar( 'Dm', 'Dm', 17.719)) # ps^-1 mistag = WS(ws, RooRealVar('mistag', 'mistag', 0.35, 0.0, 0.5)) tageff = WS(ws, RooRealVar('tageff', 'tageff', 0.60, 0.0, 1.0)) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', 0.040, 0.001, 0.100))
m = max([coefflist.at(j).getVal() for j in xrange(0, coefflist.getSize())]) from ROOT import RooProduct c = WS(ws, RooConstVar('SplineAccNormCoeff', 'SplineAccNormCoeff', 0.99 / m)) tacc_norm = WS(ws, RooProduct('SplineAcceptanceNormalised', 'SplineAcceptanceNormalised', RooArgList(tacc, c))) del c del m del coefflist return tacc, tacc_norm results = [] for tag in xrange(0, 4): ws = RooWorkspace('ws') gamma = WS(ws, RooRealVar('Gamma', 'Gamma', 1.0, 0.1, 2.5)) dGamma = WS(ws, RooRealVar('dGamma', 'dGamma', 0.5, 0.0, 2.5)) SF = WS(ws, RooConstVar('SF', 'SF', 1.37)) tau = WS(ws, Inverse('tau', 'tau', gamma)) one = WS(ws, RooConstVar('one', 'one', 1.)) zero = WS(ws, RooConstVar('zero', 'zero', 0.)) # observable time = WS(ws, RooRealVar('time', '#tau(combinatorial) [ps]', *TimeRange)) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', *TimeErrRange)) tacc, tacc_norm = accbuilder(time, knots[BDTGRange[0:2]], coeffs[isDsK][BDTGRange]) ds = getDataSet(ws, '%s && %u == abs(lab0_TAGDECISION_OS) && '
def buildTimePdf(config, tupleDataSet, tupleDict): from B2DXFitters.WS import WS print 'CONFIGURATION' for k in sorted(config.keys()): print ' %32s: %32s' % (k, config[k]) ws = RooWorkspace('ws_%s' % config['Context']) one = WS(ws, RooConstVar('one', '1', 1.0)) zero = WS(ws, RooConstVar('zero', '0', 0.0)) ###USE FIT CONTEXT """ build time pdf, return pdf and associated data in dictionary """ # start by defining observables time = WS(ws, tupleDataSet.get().find('ct')) #qt = WS(ws, tupleDataSet.get().find('ssDecision')); ''' time = WS(ws, RooRealVar('time', 'time [ps]', 0.2, 15.0)) ''' qf = WS(ws, RooCategory('qf', 'final state charge')) qf.defineType('h+', +1) qf.defineType('h-', -1) qt = WS(ws, RooCategory('qt', 'tagging decision')) qt.defineType('B+', +1) qt.defineType('Untagged', 0) qt.defineType('B-', -1) # now other settings Gamma = WS(ws, RooRealVar('Gamma', 'Gamma', 0.661)) # ps^-1 DGamma = WS(ws, RooRealVar('DGamma', 'DGamma', 0.106)) # ps^-1 Dm = WS(ws, RooRealVar('Dm', 'Dm', 17.719)) # ps^-1 # HACK (1/2): be careful about lower bound on eta, since mistagpdf below # is zero below a certain value - generation in accept/reject would get # stuck if 'GEN' in config['Context'] or 'FIT' in config['Context']: eta = WS( ws, RooRealVar( 'eta', 'eta', 0.35, 0.0 if 'FIT' in config['Context'] else (1. + 1e-5) * max(0.0, config['TrivialMistagParams']['omega0']), 0.5)) mistag = WS(ws, RooRealVar('mistag', 'mistag', 0.35, 0.0, 0.5)) tageff = WS(ws, RooRealVar('tageff', 'tageff', 0.60, 0.0, 1.0)) terrpdf = WS(ws, tupleDataSet.get().find('cterr')) timeerr = WS(ws, RooRealVar('timeerr', 'timeerr', 0.040, 0.001, 0.100)) #MISTAGPDF # fit average mistag # add mistagged #ge rid of untagged events by putting restriction on qf or something when reduceing ds # now build the PDF from B2DXFitters.timepdfutils import buildBDecayTimePdf from B2DXFitters.resmodelutils import getResolutionModel from B2DXFitters.acceptanceutils import buildSplineAcceptance obs = [qf, qt, time] acc, accnorm = buildSplineAcceptance( ws, time, 'Bs2DsPi_accpetance', config['SplineAcceptance']['KnotPositions'], config['SplineAcceptance']['KnotCoefficients'][config['Context'][0:3]], 'FIT' in config['Context']) # float for fitting # get resolution model resmodel, acc = getResolutionModel(ws, config, time, timeerr, acc) mistagpdf = WS( ws, RooArgList(tupleDataSet.get().find('ssMistag'), tupleDataSet.get().find('osMistag'))) #??? ''' if 'GEN' in config['Context']: # build a (mock) mistag distribution mistagpdfparams = {} # start with parameters of mock distribution for sfx in ('omega0', 'omegaavg', 'f'): mistagpdfparams[sfx] = WS(ws, RooRealVar( 'Bs2DsPi_mistagpdf_%s' % sfx, 'Bs2DsPi_mistagpdf_%s' % sfx, config['TrivialMistagParams'][sfx])) # build mistag pdf itself mistagpdf = WS(ws, [tupleDataSet.reduce('ssMistag'), tupleDataSet.reduce('osMistag')]); mistagcalibparams = {} # start with parameters of calibration for sfx in ('p0', 'p1', 'etaavg'): mistagcalibparams[sfx] = WS(ws, RooRealVar('Bs2DsPi_mistagcalib_%s' % sfx, 'Bs2DsPi_mistagpdf_%s' % sfx,config['MistagCalibParams'][sfx])); for sfx in ('p0', 'p1'): # float calibration paramters mistagcalibparams[sfx].setConstant(False) mistagcalibparams[sfx].setError(0.1) # build mistag pdf itself omega = WS(ws, MistagCalibration( 'Bs2DsPi_mistagcalib', 'Bs2DsPi_mistagcalib', eta, mistagcalibparams['p0'], mistagcalibparams['p1'], mistagcalibparams['etaavg'])) # build the time pdf if 'GEN' in config['Context']: pdf = buildBDecayTimePdf( config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [ [ omega ] ], [ tageff ], Gamma, DGamma, Dm, C = one, D = zero, Dbar = zero, S = zero, Sbar = zero, timeresmodel = resmodel, acceptance = acc, timeerrpdf, mistagpdf = [mistagpdf], mistagobs = eta) else: pdf = buildBDecayTimePdf( config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [ [ eta ] ], [ tageff ], Gamma, DGamma, Dm, C = one, D = zero, Dbar = zero, S = zero, Sbar = zero, timeresmodel = resmodel, acceptance = acc, timeerrpdf = None) ''' pdf = buildBDecayTimePdf(config, 'Bs2DsPi', ws, time, timeerr, qt, qf, [[eta]], [tageff], Gamma, DGamma, Dm, C=one, D=zero, Dbar=zero, S=zero, Sbar=zero, timeresmodel=resmodel, acceptance=acc, timeerrpdf=terrpdf, mistagpdf=[mistagpdf], mistagobs=eta) return { # return things 'ws': ws, 'pdf': pdf, 'obs': obs }
def GenTimePdfUtils(configfile, workspace, Gamma, DeltaGamma, DeltaM, singletagger, notagging, noprodasymmetry, notagasymmetries, debug) : print "" print "================================================================" print " Utilities for building signal time PDF..." print "================================================================" print "" #CP observables print "=> Defining CP observables..." ACPobs = cpobservables.AsymmetryObservables(configfile["DecayRate"]["ArgLf_d"], configfile["DecayRate"]["ArgLbarfbar_d"], configfile["DecayRate"]["ModLf_d"]) ACPobs.printtable() C = WS(workspace,RooRealVar('C','C',ACPobs.Cf(),param_limits["lower"], param_limits["upper"])) S = WS(workspace,RooRealVar('S','S',ACPobs.Sf(),param_limits["lower"], param_limits["upper"])) D = WS(workspace,RooRealVar('D','D',ACPobs.Df(),param_limits["lower"], param_limits["upper"])) Sbar = WS(workspace,RooRealVar('Sbar','Sbar',ACPobs.Sfbar(),param_limits["lower"], param_limits["upper"])) Dbar = WS(workspace,RooRealVar('Dbar','Dbar',ACPobs.Dfbar(),param_limits["lower"], param_limits["upper"])) #C = WS(workspace,RooRealVar('C','C',0.0)) #S = WS(workspace,RooRealVar('S','S',0.0)) #D = WS(workspace,RooRealVar('D','D',0.0)) #Sbar = WS(workspace,RooRealVar('Sbar','Sbar',0.0)) #Dbar = WS(workspace,RooRealVar('Dbar','Dbar',0.0)) #setConstantIfSoConfigured(C,configfile) #setConstantIfSoConfigured(S,configfile) #setConstantIfSoConfigured(D,configfile) #setConstantIfSoConfigured(Sbar,configfile) #setConstantIfSoConfigured(Dbar,configfile) #Tagging efficiency print "=> Getting tagging efficiency..." tagEff = [] tagEffList = [] if notagging: print "=> Perfect tagging" if singletagger: print "=> Single tagger" tagEff.append(WS(workspace,RooRealVar('tagEff_'+str(1), 'Tagging efficiency', 1.0))) printifdebug(debug,tagEff[0].GetName()+": "+str(tagEff[0].getVal()) ) tagEffList.append(tagEff[0]) else: print "=> More taggers" for i in range(0,3): tagEff.append(WS(workspace,RooRealVar('tagEff_'+str(i+1), 'Tagging efficiency', 1.0))) printifdebug(debug,tagEff[i].GetName()+": "+str(tagEff[i].getVal()) ) tagEffList.append(tagEff[i]) else: print "=> Non-trivial tagging" if singletagger: print "=> Single tagger" tagEff.append(WS(workspace,RooRealVar('tagEff_'+str(1), 'Tagging efficiency', configfile["TagEff"]["Signal"][0]))) printifdebug(debug,tagEff[0].GetName()+": "+str(tagEff[0].getVal()) ) tagEffList.append(tagEff[0]) else: print "=> More taggers" for i in range(0,3): tagEff.append(WS(workspace,RooRealVar('tagEff_'+str(i+1), 'Tagging efficiency', configfile["TagEff"]["Signal"][i]))) printifdebug(debug,tagEff[i].GetName()+": "+str(tagEff[i].getVal()) ) tagEffList.append(tagEff[i]) #Asymmetries print "=> Getting production asymmetry..." if noprodasymmetry: print "=> No asymmetries" aProd = None else: print "=> Non-zero asymmetry" aProd = WS(workspace,RooRealVar('aprod', 'aprod', configfile["AProd"]["Signal"], -1.0, 1.0)) #setConstantIfSoConfigured(aProd,configfile) printifdebug(debug,aProd.GetName()+": "+str(aProd.getVal()) ) print "=> Getting tagging asymmetries..." if notagasymmetries: print "=> No asymmetries" aTagEffList = None else: aTagEff = [] aTagEffList = [] print "=> Non-zero asymmetries" if singletagger: aTagEff.append(WS(workspace,RooRealVar('aTagEff_'+str(1), 'atageff', configfile["ATagEff"]["Signal"][0]))) printifdebug(debug,aTagEff[0].GetName()+": "+str(aTagEff[0].getVal()) ) aTagEffList.append(aTagEff[0]) else: for i in range(0,3): aTagEff.append(WS(workspace,RooRealVar('aTagEff_'+str(i+1), 'atageff', configfile["ATagEff"]["Signal"][i]))) printifdebug(debug,aTagEff[i].GetName()+": "+str(aTagEff[i].getVal()) ) aTagEffList.append(aTagEff[i]) #Summary of memory location if debug: print "==> Memory location of returned objects:" print "C: " print C print C.getVal() print "D: " print D print D.getVal() print "Dbar: " print Dbar print Dbar.getVal() print "S: " print S print S.getVal() print "Sbar: " print Sbar print Sbar.getVal() print "aProd: " print aProd if None != aProd: print aProd.getVal() print "tagEff: " print tagEff print "aTagEff: " print aTagEffList #Return things return { 'C': C, 'D': D, 'Dbar': Dbar, 'S': S, 'Sbar': Sbar, 'aProd': aProd, 'tagEff': tagEffList, 'aTagEff': aTagEffList }