Example #1
0
lambdaS = 1. / 10.
lambdaG = 1. / 10.
priors = {
    'alpha': alpha,
    'beta': beta,
    'lambdaF': lambdaF,
    'lambdaS': lambdaS,
    'lambdaG': lambdaG
}

# Load in the CCLE EC50 dataset
R, M = load_ccle(ic50=False)

# Run the cross-validation framework
#random.seed(1)
#numpy.random.seed(1)
nested_crossval = GreedySearchCrossValidation(classifier=bnmtf_gibbs_optimised,
                                              R=R,
                                              M=M,
                                              values_K=K_range,
                                              values_L=L_range,
                                              folds=no_folds,
                                              priors=priors,
                                              init_S=init_S,
                                              init_FG=init_FG,
                                              iterations=iterations,
                                              restarts=restarts,
                                              quality_metric=quality_metric,
                                              file_performance=output_file)
nested_crossval.run(burn_in=burn_in, thinning=thinning)
Example #2
0
priors = {
    'alpha': alpha,
    'beta': beta,
    'lambdaF': lambdaF,
    'lambdaS': lambdaS,
    'lambdaG': lambdaG
}

minimum_TN = 0.01

# Load in the CCLE IC50 dataset
R, M = load_ccle(ic50=True)

# Run the cross-validation framework
#random.seed(1)
#numpy.random.seed(1)
nested_crossval = GreedySearchCrossValidation(classifier=nmtf_icm,
                                              R=R,
                                              M=M,
                                              values_K=K_range,
                                              values_L=L_range,
                                              folds=no_folds,
                                              priors=priors,
                                              init_S=init_S,
                                              init_FG=init_FG,
                                              iterations=iterations,
                                              restarts=restarts,
                                              quality_metric=quality_metric,
                                              file_performance=output_file)
nested_crossval.run(minimum_TN=minimum_TN)