Example #1
0
    def GraphEvents(self):
        '''
        DESCRIPTION:

            Gráfica de los eventos.
        '''
        PathImg = 'Tesis_MscR/02_Docs/01_Tesis_Doc/Kap2/Img/'+self.DataBase+'/Series/'
        Name = self.NamesArch[self.irow]+'_Series'
        Var = ['Precipitación','Temperatura','Humedad Relativa','Presión']

        BP.GraphIDEA(self.f['FechaCP'],self.f['PrecC'],
                self.f['TC'],self.f['HRC'],self.f['PresC'],Var,PathImg,0,V=0,Name=Name)
        return
Example #2
0
    def InterData(self):
        '''
        DESCRIPTION:

            Función para interpolar los datos NaN que se puedan.
        '''
        print(' Se interpolan los datos NaN')
        # Se interpolan los datos que se pueden interpolar
        for iv,v in enumerate(self.Variables):
            if self.flag[v]:
                self.f[self.Variables2[v]] = BP.NaNEl(self.f[v])

        self.var = list(self.f)
        self.flag['Variables2'] = True
        return
Example #3
0
    def Cycle_An(self):
        '''
        DESCRIPTION:

            Gráfica los diferentes ciclos climatológicos y meteorológicos.
        '''
        PathImg = 'Tesis_MscR/02_Docs/01_Tesis_Doc/Kap2/Img/'+self.DataBase+'/Hidro_A/'
        Name = self.NamesArch[self.irow]
        Var = ['Precipitación','Temperatura','Humedad Relativa','Presión']
        Variables = ['Prec','T','HR','Pres']

        # Se carga la información Horaria
        DataH = LD.LoadData(self.ArchT,self.DataBase,irow=self.irow,TimeScale='Horarios')
        self.DataH = DataH
        if self.DataBase == 'Manizales':
            FechaC = DataH['FechaEs']
        elif self.DataBase == 'Medellin':
            FechaC = DataH['FechasC']
        elif self.DataBase == 'Amazonas' or self.DataBase == 'Wunder':
            if self.irow == 1 and self.DataBase == 'Amazonas':
                FechaC = DataH['FechasC']
            else:
                FechaC = DataH['FechaC']

        if self.DataBase == 'Amazonas':
            FechaCP = DUtil.Dates_str2datetime(FechaC,Date_Format='%Y/%m/%d-%H%M',flagQuick=True)
            FechaCP = FechaCP - timedelta(0,4*60*60)
            for Lab in Variables:
                VC = DMan.CompD(FechaCP,DataH[Lab+'H'],dtm=timedelta(0,60*60))
                DataH[Lab+'H'] = VC['VC']
                if Lab == 'PrecC':
                    FechaC = VC['DatesC']
        # Se carga la información Diaria
        DataD = LD.LoadData(self.ArchT,self.DataBase,irow=self.irow,TimeScale='Diarios')
        self.DataD = DataD
        if self.DataBase == 'Manizales':
            FechaCD = DataD['FechaEs']
            FechaCD = np.array([i[:4]+'/'+i[5:] for i in FechaCD])
        elif self.DataBase == 'Medellin' or self.DataBase == 'Amazonas':
            FechaCD = DataD['FechaEs']
        elif self.DataBase == 'Wunder':
            FechaCD = DataD['FechaM']
        self.FechaCD = FechaCD

        # Se carga la información
        CH = dict()
        CM = dict()
        for Lab in Variables:
            # Horario
            try:
                HASR = HA(DateH=FechaC,VarH=DataH[Lab+'H'])
            except KeyError:
                HASR = HA(DateH=FechaC,VarH=DataH[Lab+'CH'])
            CH[Lab] = HASR.CiclD(FlagG=False)

            # Diario
            try:
                HASR = HA(DateM=FechaCD,VarM=DataD[Lab+'M'])
            except KeyError:
                HASR = HA(DateM=FechaCD,VarM=DataD[Lab+'CM'])
            CM[Lab] = HASR.CiclA(FlagG=False)

        self.CH = CH
        self.CM = CM

        # Se grafica el ciclo diurno
        BP.Graph_CiclD(CH['Prec'],CH['T'],CH['HR'],CH['Pres'],Var,PathImg,Name=Name)
        BP.Graph_CiclA(CM['Prec'],CM['T'],CM['HR'],CM['Pres'],Var,PathImg,Name=Name)
        return 
Example #4
0
    def EventSeparation(self,Ci=60,Cf=60,m=0.2,M=100,mP=-1,MP=-0.5,mT=0.5,MT=1):
        '''
        DESCRIPTION:

            Función para separar los eventos.
        '''
        print(' Se generan los diferentes diagramas de compuestos')
        if self.flag['VariablesF']:
            Var2 = self.VariablesF
            Var2['PrecC'] = 'PrecC'
        elif self.flag['Variables2']:
            Var2 = self.Variables2
        else:
            Var2 = self.Variables_N

        Var = self.Variables
        Variable = dict()
        VariablePres = dict()
        VariableTemp = dict()
        for iv,v in enumerate(Var[1:]):
            if self.flag[v]:
                print(v)
                PrecC, Variable[v], FechaEv = BP.ExEv(self.f[Var2['PrecC']],self.f[Var2[v]],self.f['FechaC'],Ci=Ci,Cf=Cf,m=m,M=M,dt=int(self.dtm))
        print(PrecC.shape)

        for iv,v in enumerate(Var):
            if v != 'PresC':
                if self.flag[v]:
                    PresC, VariablePres[v], FechaEvPres = BP.ExEvGen(self.f[Var2['PresC']],self.f[Var2[v]],self.f['FechaC'],Ci=Ci,Cf=Cf,m=mP,M=MP,MaxMin='min')

        for iv,v in enumerate(Var):
            if v != 'TC':
                if self.flag[v]:
                    TC, VariableTemp[v], FechaEvTemp = BP.ExEvGen(self.f[Var2['TC']],self.f[Var2[v]],self.f['FechaC'],Ci=Ci,Cf=Cf,m=mT,M=MT,MaxMin='max')
        xx = 0
        FechaEv2=[]
        # Se realiza una limpeza de los datos adicional
        for i in range(len(PrecC)):
            q = ~np.isnan(PrecC[i])
            N = np.sum(q)
            q2 = ~np.isnan(Variable['PresC'][i])
            N2 = np.sum(q2)
            q3 = ~np.isnan(Variable['TC'][i])
            N3 = np.sum(q3)
            a = len(q)*0.70
            if N >= a and N2 >= a and N3 >= a:
                if xx == 0:
                    PrecC2 = PrecC[i]
                    PresC2 = Variable['PresC'][i]
                    TC2 = Variable['TC'][i]
                    HRC2 = Variable['HRC'][i]
                    qC2 = Variable['qC'][i]
                    WC2 = Variable['WC'][i]
                    xx += 1
                else:
                    PrecC2 = np.vstack((PrecC2,PrecC[i]))
                    PresC2 = np.vstack((PresC2,Variable['PresC'][i]))
                    TC2 = np.vstack((TC2,Variable['TC'][i]))
                    HRC2 = np.vstack((HRC2,Variable['HRC'][i]))
                    qC2 = np.vstack((qC2,Variable['qC'][i]))
                    WC2 = np.vstack((WC2,Variable['WC'][i]))
                FechaEv2.append(FechaEv[i])
                xx += 1
        self.f[self.VariablesComp['PrecC']] = PrecC2
        self.f[self.VariablesComp['PresC']] = PresC2
        self.f[self.VariablesComp['TC']] = TC2
        self.f[self.VariablesComp['HRC']] = HRC2
        self.f[self.VariablesComp['qC']] = qC2
        self.f[self.VariablesComp['WC']] = WC2
        self.f['FechaEv'] = FechaEv2

        xx = 0
        FechaEv2=[]
        # Se realiza una limpeza de los datos adicional de presión
        for i in range(len(PresC)):
            q = ~np.isnan(PresC[i])
            N = np.sum(q)
            q2 = ~np.isnan(VariablePres['PrecC'][i])
            N2 = np.sum(q2)
            q3 = ~np.isnan(VariablePres['TC'][i])
            N3 = np.sum(q3)
            a = len(q)*0.70
            if N >= a and N2 >= a and N3 >= a:
                if xx == 0:
                    PresC2 = PresC[i]
                    PrecC2 = VariablePres['PrecC'][i]
                    TC2 = VariablePres['TC'][i]
                    HRC2 = VariablePres['HRC'][i]
                    qC2 = VariablePres['qC'][i]
                    WC2 = VariablePres['WC'][i]
                    xx += 1
                else:
                    PresC2 = np.vstack((PresC2,PresC[i]))
                    PrecC2 = np.vstack((PrecC2,VariablePres['PrecC'][i]))
                    TC2 = np.vstack((TC2,VariablePres['TC'][i]))
                    HRC2 = np.vstack((HRC2,VariablePres['HRC'][i]))
                    qC2 = np.vstack((qC2,VariablePres['qC'][i]))
                    WC2 = np.vstack((WC2,VariablePres['WC'][i]))
                FechaEv2.append(FechaEvPres[i])
                xx += 1
        self.f[self.VariablesComp['PrecC_Pres']] = PrecC2
        self.f[self.VariablesComp['PresC_Pres']] = PresC2
        self.f[self.VariablesComp['TC_Pres']] = TC2
        self.f[self.VariablesComp['HRC_Pres']] = HRC2
        self.f[self.VariablesComp['qC_Pres']] = qC2
        self.f[self.VariablesComp['WC_Pres']] = WC2
        self.f['FechaEv_Pres'] = FechaEv2


        xx = 0
        FechaEv2=[]
        # Se realiza una limpeza de los datos adicional de presión
        for i in range(len(TC)):
            q = ~np.isnan(TC[i])
            N = np.sum(q)
            q2 = ~np.isnan(VariableTemp['PresC'][i])
            N2 = np.sum(q2)
            q3 = ~np.isnan(VariableTemp['PrecC'][i])
            N3 = np.sum(q3)
            a = len(q)*0.70
            if N >= a and N2 >= a and N3 >= a:
                if xx == 0:
                    TC2 = TC[i]
                    PrecC2 = VariableTemp['PrecC'][i]
                    PresC2 = VariableTemp['PresC'][i]
                    HRC2 = VariableTemp['HRC'][i]
                    qC2 = VariableTemp['qC'][i]
                    WC2 = VariableTemp['WC'][i]
                    xx += 1
                else:
                    TC2 = np.vstack((TC2 ,TC[i]))
                    PrecC2 = np.vstack((PrecC2,VariableTemp['PrecC'][i]))
                    PresC2 = np.vstack((PresC2,VariableTemp['PresC'][i]))
                    HRC2 = np.vstack((HRC2,VariableTemp['HRC'][i]))
                    qC2 = np.vstack((qC2,VariableTemp['qC'][i]))
                    WC2 = np.vstack((WC2,VariableTemp['WC'][i]))
                FechaEv2.append(FechaEvTemp[i])
                xx += 1
        self.f[self.VariablesComp['PrecC_Temp']] = PrecC2
        self.f[self.VariablesComp['PresC_Temp']] = PresC2
        self.f[self.VariablesComp['TC_Temp']] = TC2
        self.f[self.VariablesComp['HRC_Temp']] = HRC2
        self.f[self.VariablesComp['qC_Temp']] = qC2
        self.f[self.VariablesComp['WC_Temp']] = WC2
        self.f['FechaEv_Temp'] = FechaEv2
        self.flag['VariablesComp'] = True

        return
Example #5
0
    def GraphValidation(self,
                        Prec,
                        Name='',
                        NameArch='',
                        PathImg='',
                        ImgFolder='',
                        Evmax=1,
                        EvType='Tot',
                        flags={
                            'TC': False,
                            'PresC': False,
                            'HRC': False,
                            'qC': False,
                            'WC': False
                        },
                        flagAver=False,
                        flagBig=False,
                        DataV=None,
                        DataKeyV=['DatesEvst', 'DatesEvend'],
                        vm={
                            'vmax': [None],
                            'vmin': [0]
                        },
                        GraphInfoV={
                            'color': ['-.b', '-.g'],
                            'label': ['Inicio del Evento', 'Fin del Evento']
                        }):
        '''
        DESCRIPTION:
            Con esta función se pretenden graficar los diferentes eventos de 
            precipitación por separado.

            Es necesario haber corrido la función EventsPrecPresDetection antes.
        _________________________________________________________________________

        INPUT:
            + ImgFolder: Carpeta donde se guardarán los datos.
        _________________________________________________________________________

        OUTPUT:
            Se generan los gráficos

        '''
        # Constants
        self.PathImg = PathImg
        dt = self.dt
        Labels = ['PresC', 'TC', 'HRC', 'qC', 'WC']
        UnitsDict = {
            'TC': 'Temperatura [°C]',
            'PresC': 'Presión [hPa]',
            'HRC': 'Humedad Relativa [%]',
            'qC': 'Humedad Específica [g/kg]',
            'WC': 'Relación de Mezcla [g/kg]'
        }
        ColorDict = {'TC': 'r', 'PresC': 'k', 'HRC': 'g', 'qC': 'g', 'WC': 'm'}
        LabelDict = {
            'TC': 'Temperatura',
            'PresC': 'Presión',
            'HRC': 'Humedad Relativa',
            'qC': 'Humedad Específica',
            'WC': 'Relación de Mezcla de V.A.'
        }

        DataKeys = ['PrecC']
        Units = ['Precipitación [mm]']
        Color = ['b']
        Label = ['Precipitación']
        Vars = 'Prec'
        for iLab, Lab in enumerate(Labels):
            if flags[Lab]:
                DataKeys.append(Lab)
                Units.append(UnitsDict[Lab])
                Color.append(ColorDict[Lab])
                Label.append(LabelDict[Lab])
                Vars += '_' + Lab[:-1]
        Vars += '_Events'

        self.EvSi = 0
        self.EvNo = 0
        EvTot = self.SeriesC
        for iM, M in enumerate(self.MT):
            if iM == 0:
                EvTot['PrecC'] = Prec[-int(self.Extract[0] / dt) + M:M +
                                      int(self.Extract[1] / dt)]
            else:
                EvTot['PrecC'] = np.vstack(
                    (EvTot['PrecC'], Prec[-int(self.Extract[0] / dt) + M:M +
                                          int(self.Extract[1] / dt)]))

            if np.nanmax(Prec[M:M + int(2 * 60 / dt)]) > 0:
                self.EvSi += 1
            else:
                self.EvNo += 1

        if flagAver:
            # Se grafican los eventos en promedio
            dt = int(self.dt)
            Data = dict()
            Data['PrecC'] = np.nanmean(EvTot['PrecC'], axis=0)
            for iLab, Lab in enumerate(Labels):
                if flags[Lab]:
                    Data[Lab] = np.nanmean(EvTot[Lab], axis=0)
            BP.EventsSeriesGen(EvTot['DatesP'][0],
                               Data,
                               self.PrecCount,
                               DataKeyV=DataKeyV,
                               DataKey=DataKeys,
                               PathImg=self.PathImg + ImgFolder + 'Series/' +
                               EvType + '/' + Vars + '/',
                               Name=self.Names[self.irow],
                               NameArch=self.NamesArch[self.irow],
                               GraphInfo={
                                   'ylabel': Units,
                                   'color': Color,
                                   'label': Label
                               },
                               GraphInfoV={
                                   'color': ['-.b', '-.g'],
                                   'label':
                                   ['Inicio del Evento', 'Fin del Evento']
                               },
                               flagBig=flagBig,
                               vm=vm,
                               Ev=0,
                               flagV=False,
                               flagAverage=True,
                               dt=dt)
        else:
            # Se grafican los eventos
            for iEv in range(len(EvTot['PrecC'])):
                if iEv <= Evmax:
                    Data = dict()
                    Data['PrecC'] = EvTot['PrecC'][iEv]
                    for iLab, Lab in enumerate(Labels):
                        if flags[Lab]:
                            Data[Lab] = EvTot[Lab][iEv]
                    if not (DataV is None):
                        DataVer = dict()
                        for iLab, Lab in enumerate(DataKeyV):
                            DataVer[Lab] = DataV[Lab][iEv]
                    else:
                        DataVer = None
                    BP.EventsSeriesGen(EvTot['DatesP'][iEv],
                                       Data,
                                       DataVer,
                                       DataKeyV=DataKeyV,
                                       DataKey=DataKeys,
                                       PathImg=self.PathImg + ImgFolder +
                                       'Series/' + EvType + '/' + Vars + '/',
                                       Name=Name,
                                       NameArch=NameArch,
                                       GraphInfo={
                                           'ylabel': Units,
                                           'color': Color,
                                           'label': Label
                                       },
                                       GraphInfoV=GraphInfoV,
                                       flagV=False,
                                       flagBig=flagBig,
                                       vm={
                                           'vmax': [None],
                                           'vmin': [0]
                                       },
                                       Ev=iEv,
                                       Date=EvTot['Dates'][iEv][0])
        return
Example #6
0
    def __FindValue(self,
                    Var='Pres',
                    Oper='min',
                    Comp='<',
                    M=None,
                    limits=[-5, 5]):
        '''
        DESCRIPTION:
            Method that find the minimum or maximum value in the series
            and calculates the changes.
        _________________________________________________________________________
        
        INPUT:
         :param Var: An str, str of the dictionary of the Attribute Series. 
         :param VarC: An str, str of the dictionary of the Attribute Series when
                      comparation. 
         :param Oper: A str, Function that would search the value ('max','min').
         :param Extract: A list, List with the limits of the extracted values 
                         in minutes.
         :param Comp: A str, string with the comparation that would be made.
         :param M: A int or None, Integer with the position of the maximum of 
                   minimum, if None it searches in the whole series.
         :param limits: A list or None, List with the limits of search from the 
                        value of M.
        _________________________________________________________________________
        
        OUTPUT:
        '''
        # Constants
        dt = self.dt
        Extract = self.Extract
        # Determine Operation
        O = self.Oper[Oper.lower()]
        Comp = DM.Oper_Det(Comp)
        flagRange = True

        if M is None:
            flagRange = False

        if flagRange:
            MVal = O(self.Series[Var][int(limits[0] / dt) + M:M +
                                      int(limits[1] / dt)])
            # Validation of the data
            if Comp(MVal, self.Limits[Var]['MV']):
                # Se extrae el evento
                Event = self.Series[Var][-int(Extract[0] / dt) +
                                         M:int(Extract[1] / dt) + M].copy()
                if -int(self.Extract[0]) + M < 0:
                    self.Series[Var][0:int(self.Erase) + M] = np.nan
                    return -2
                elif int(self.Extract[1]) + M > len(self.Series[Var]):
                    self.Series[Var][-int(self.Erase) +
                                     M:len(self.Series[Var])] = np.nan
                    return -2
                else:
                    self.Series[Var][-int(self.Erase) + M:int(self.Erase) +
                                     M] = np.nan
                q = sum(~np.isnan(Event))
                if q < 0.9 * len(Event):
                    return -2
                MP = np.where(Event == MVal)[0][0]
                # Se calculan los cambios
                Changes = BP.C_Rates_Changes(Event, dt=dt, MP=MP, MaxMin=Oper)
                if Changes['VRateB'] < self.Limits[Var]['VRateB'] or np.isnan(
                        Changes['VRateB']):
                    return -2

                try:
                    VarC = list(Changes)
                    for V in VarC:
                        a = len(self.Changes[Var][V])
                        self.Changes[Var][V] = np.hstack(
                            (self.Changes[Var][V], Changes[V]))
                    self.SeriesC[Var + 'C'] = np.vstack(
                        (self.SeriesC[Var + 'C'], Event))
                except KeyError:
                    self.Changes[Var] = Changes.copy()
                    self.SeriesC[Var + 'C'] = Event.copy()
                self.M[Var].append(MP)
            else:
                return -2
        else:
            # Finding the value
            MVal = O(self.Series[Var])
            M = np.where(self.Series[Var] == MVal)[0][0]
            # Validation of the data
            if Comp(MVal, self.Limits[Var]['MV']):
                # Se extrae el evento
                Event = self.Series[Var][-int(Extract[0] / dt) +
                                         M:int(Extract[1] / dt) + M].copy()
                if -int(self.Extract[0]) + M < 0:
                    self.Series[Var][0:int(self.Erase) + M] = np.nan
                    return -2
                elif int(self.Extract[1]) + M > len(self.Series[Var]):
                    self.Series[Var][-int(self.Erase) +
                                     M:len(self.Series[Var])] = np.nan
                    return -2
                else:
                    self.Series[Var][-int(self.Erase) + M:int(self.Erase) +
                                     M] = np.nan
                q = sum(~np.isnan(Event))
                if q < 0.9 * len(Event):
                    return -2
                MP = np.where(Event == MVal)[0][0]
                # Se calculan los cambios
                Changes = BP.C_Rates_Changes(Event, dt=dt, MP=MP, MaxMin=Oper)
                if Changes['VRateB'] < self.Limits[Var]['VRateB'] or np.isnan(
                        Changes['VRateB']):
                    return -2

                Dates = self.Series['Dates'].datetime[-int(Extract[0] / dt) +
                                                      M:int(Extract[1] / dt) +
                                                      M]
                try:
                    VarC = list(Changes)
                    for V in VarC:
                        a = len(self.Changes[Var][V])
                        self.Changes[Var][V] = np.hstack(
                            (self.Changes[Var][V], Changes[V]))
                    self.SeriesC['DatesP'] = np.vstack(
                        (self.SeriesC['DatesP'], Dates))
                    self.SeriesC['Dates'] = np.vstack(
                        (self.SeriesC['Dates'],
                         self.Series['Dates'].str[-int(Extract[0] / dt) +
                                                  M:int(Extract[1] / dt) + M]))
                    self.SeriesC[Var + 'C'] = np.vstack(
                        (self.SeriesC[Var + 'C'], Event))
                except KeyError:
                    self.Changes[Var] = Changes.copy()
                    self.SeriesC['DatesP'] = self.Series['Dates'].datetime[
                        -int(Extract[0] / dt) + M:int(Extract[1] / dt) + M]
                    self.SeriesC['Dates'] = self.Series['Dates'].str[
                        -int(Extract[0] / dt) + M:int(Extract[1] / dt) + M]
                    self.SeriesC[Var + 'C'] = Event.copy()
                self.MT.append(M)
                self.M[Var].append(MP)
            else:
                return -1
        return 1
Example #7
0
    def LoadStations(self):
        '''
        DESCRIPTION:
            This method loads the information of the different stations.
        _________________________________________________________________
        INPUT:
        '''
        # ----------------
        # Constants
        # ----------------
        lenArch = len(self.SC.Arch)
        lenData = int((self.DateE-self.DateI).seconds/60)
        self.DataSt = {}
        self.PrecCount = {}
        self.Changes = {}
        self.IDC = []
        dt = 1
        # Horas atras
        TBef = 1
        # minutos hacia adelante
        TAft = 30
        Labels = ['FechaC','FechaCP','Prec','Pres_F','T_F','HR_F','W_F','q_F']
        LabCh = ['Pres_F','T_F','HR_F']
        opers = {'Pres_F':np.nanmin,'T_F':np.nanmax,'HR_F':np.nanmin}
        MaxMin = {'Pres_F':'min','T_F':'max','HR_F':'min'}
        self.vmax = {}
        self.vmin = {}
        for Lab in Labels[1:]:
            self.vmax[Lab] = []
            self.vmin[Lab] = []


        # ----------------
        # Extract Data
        # ----------------
        for iar in range(lenArch):
            self.DataSt[self.ID[iar]] = {}
            self.SC.LoadData(irow=iar)
            xi = np.where(self.SC.f['FechaCP'] == self.DateI)[0]
            xf = np.where(self.SC.f['FechaCP'] == self.DateE)[0]
            if len(xi) == 0 or len(xf) == 0:
                for Lab in Labels:
                    self.DataSt[self.ID[iar]][Lab] = np.array(lenData)
                continue
            for iLab,Lab in enumerate(Labels):
                self.DataSt[self.ID[iar]][Lab] = self.SC.f[Lab][xi:xf+1]
                if iLab > 1:
                    self.vmax[Lab].append(np.nanmax(self.SC.f[Lab][xi:xf+1]))
                    self.vmin[Lab].append(np.nanmin(self.SC.f[Lab][xi:xf+1]))

            # Changes
            if np.nanmax(self.DataSt[self.ID[iar]]['Prec']) == 0 or np.isnan(np.nanmax(self.DataSt[self.ID[iar]]['Prec'])):
                continue
            xMax = np.where(self.DataSt[self.ID[iar]]['Prec'] == np.nanmax(self.DataSt[self.ID[iar]]['Prec']))[0][0]
            # Precipitation
            self.PrecCount[self.ID[iar]] = HyMF.PrecCount(self.DataSt[self.ID[iar]]['Prec'],self.DataSt[self.ID[iar]]['FechaC'],dt=1,M=xMax)
            
            try:
                flag = np.isnan(self.PrecCount[self.ID[iar]]['DatesEvst'][0])
            except TypeError:
                flag = False
            if flag:
                continue
            
            # Change First
            xEv = np.where(self.DataSt[self.ID[iar]]['FechaCP'] == self.PrecCount[self.ID[iar]]['DatesEvst'][0])[0][0]
            Bef = xEv-int(60/dt*TBef)
            Aft = xEv+int(60/dt*(TAft/60)) 
            self.Changes[self.ID[iar]] = dict()
            for Var in LabCh:
                oper = opers[Var]
                Min = oper(self.DataSt[self.ID[iar]][Var][Bef:Aft])
                xMin1 = np.where(self.DataSt[self.ID[iar]][Var][:Aft]==Min)[0][-1]
                self.Changes[self.ID[iar]][Var] = BP.C_Rates_Changes(self.DataSt[self.ID[iar]][Var],dt=dt,
                        MP=xMin1,MaxMin=MaxMin[Var],flagTop=False)
            self.IDC.append(self.ID[iar])

        self.vmax2 = self.vmax.copy()
        self.vmin2 = self.vmin.copy()
        for Lab in Labels[2:]:
            self.vmax[Lab] = np.nanmax(self.vmax[Lab])+0.1
            if Lab == 'Prec':
                self.vmin[Lab] = np.nanmin(self.vmin[Lab])
            else:
                self.vmin[Lab] = np.nanmin(self.vmin[Lab])-0.1


        return