Example #1
0
    def test3(self):
        print("===== formatter test3 ===========================")

        arr = numpy.asarray([k for k in range(120)], dtype=float)
        arr = arr.reshape((10, 12))

        fmtinit(max=4)
        print(fmt(arr))
        print(fmt(arr, max=None))
        print(fmt(arr, tail=1))
        print(fmt(arr, tail=3))

        print(fmt(arr[1, :], tail=1))
        print(fmt(arr[1, :], tail=3))
        print(fmt(arr[1, :], max=8, tail=2, linelength=200))
        print(fmt(arr[1, :], max=8, tail=3, linelength=200))
        print(fmt(arr[1, :], max=8, tail=4, linelength=200))
        print(fmt(arr[1, :], max=8, tail=5, linelength=200))
Example #2
0
    def testcr2(self):

        print("===== cyclic results 2 ================")

        mdl = PhaseModel(cyclic=1.0)

        x = numpy.array([0, 1, 9, 10], dtype=float)
        y = numpy.array([1, 0, 10, 9], dtype=float)
        problem = Problem(model=mdl, xdata=x, ydata=y)

        Tools.printclass(problem)

        r0 = numpy.linspace(-0.7, 1.5, 12)
        print(fmt(r0, max=None))
        r1 = problem.cyclicCorrection(r0)
        print(fmt(r1, max=None))

        self.assertTrue(all(numpy.abs(r1) <= 0.5))
Example #3
0
    def makeModel(self, nin, ndout, ndhid, npt):
        x, y = self.makeData(nin, npt, ndout)

        m1 = SoftMaxModel(ndim=nin, ndout=ndhid, offset=True)
        m1.setLimits(-10, 10)

        p1 = numpy.random.random(m1.npars) * 20 - 10
        print(m1.npars, fmt(m1.result(x, p1)))

        m2 = SoftMaxModel(ndim=ndhid, ndout=ndout, offset=True)
        m2.setLimits(-10, 10)

        m = m1 | m2

        pp = numpy.random.random(m.npars) * 20 - 10
        print(m.npars, fmt(m.result(x, pp)))

        problem = ClassicProblem(model=m, xdata=x, ydata=y)
        return problem
Example #4
0
    def testcr4(self):

        print("===== cyclic results 4 ================")

        mdl = PhaseModel(cyclic={0: 1.0})

        x = numpy.array([0, 1, 9, 10], dtype=float)
        y = numpy.array([1, 0, 10, 9], dtype=float)
        problem = Problem(model=mdl, xdata=x, ydata=y)

        Tools.printclass(problem)

        r0 = numpy.linspace(-0.8, 1.5, 12).reshape(2, 6).transpose()
        print(fmt(r0, max=None))
        r1 = problem.cyclicCorrection(r0)
        print(fmt(r1, max=None))

        assertAAE(r0[:, 1], r1[:, 1])
        self.assertTrue(all(numpy.abs(r1[:, 0]) < 0.5))
Example #5
0
    def dotest5(self, step=10):
        print("====test5====step=%d========================" % step)
        plot = self.doplot

        nn = 10
        x = numpy.linspace(0, 2, nn, dtype=float)
        ym = 0.3 + 0.5 * x
        nf = 0.1
        numpy.random.seed(2345)
        noise = numpy.random.randn(nn)

        y = ym + nf * noise
        limits = [-1, 2]

        model = PolynomialModel(1)
        model.setLimits(lowLimits=limits[0], highLimits=limits[1])

        s = 0.0
        s2 = 0.0
        mr = 10
        for k in range(mr):
            dis = GaussErrorDistribution(scale=0.5)
            ns = PhantomSampler(x,
                                model,
                                y,
                                distribution=dis,
                                verbose=0,
                                seed=k + 12 * step)
            ns.step = step

            logE = ns.sample()
            par2 = ns.parameters
            logz2 = ns.logZ
            dlz2 = ns.logZprecision
            s += logz2
            s2 += logz2 * logz2
            print("pars  ", fmt(par2), "  logZ  ", fmt(logz2), " +- ",
                  fmt(dlz2))

        logz = s / mr
        dlz = math.sqrt(s2 / mr - logz * logz)

        print("Average  ", fmt(logz), " +- ", fmt(dlz))
    def test2( self ):
        print( "  Test 2 DecisionTreeModel" )
        ND = 10
        NP = 100
        m = DecisionTreeModel( ndim=ND, kdim=[0,1,2,3,4,5,6], depth=3 )
        print( m )

        numpy.random.seed( 12345 )
        xdata = numpy.random.rand( NP, ND )
        print( fmt( xdata ) )
        par0 = numpy.arange( m.npars, dtype=float ) + 1

        res = m.result( xdata, par0 )
        part = m.partial( xdata, par0 )

        for k in range( NP ) :
            print( fmt( res[k] ), fmt( part[k,:], max=None ) )
            self.assertTrue( part[k,int(res[k]-0.99)] == 1 )
            self.assertTrue( numpy.sum( part[k,:] ) == 1 )
    def test1Model11( self ):
        print( "  Test SplinesDynamicModel shrink" )
        xx = numpy.linspace( 0, 10, 501, dtype=float )
        kn1 = numpy.linspace( 0, 10, 16, dtype=float )
        m1 = BasicSplinesModel( knots=kn1 )
        p1 = numpy.zeros( 18, dtype=float )
        p1[7:9] = 1.0

        kn2 = numpy.append( numpy.append( kn1[:7], [5.0] ), kn1[9:] )
        m2 = BasicSplinesModel( knots=kn2 )
        p2 = numpy.zeros( 17, dtype=float )
        p2[7] = 1.4
        print( fmt( kn1, max=None ) )
        print( fmt( kn2, max=None ) )


        if self.doplot :
            plt.plot( xx, m1.result( xx, p1 ) )
            plt.plot( xx, m2.result( xx, p2 ) )
            plt.show()
    def test4(self):
        print("\n   SalesmanProblem Test User distance\n")
        np = 10
        pars = numpy.arange(np * np, dtype=int)

        problem = self.initProblem(np=np, distance=self.square)
        print(problem)

        mdis = problem.minimumDistance()
        print("mindis  ", mdis)

        dis = problem.result(pars)
        sdis = numpy.sum(dis)
        print(fmt(dis, max=None), fmt(sdis))
        self.assertAlmostEqual(sdis, 990, 6)

        problem = self.initProblem(np=np, distance=self.square, scale=3)
        dis = problem.result(pars)
        sdis = numpy.sum(dis)
        print(fmt(dis, max=None), fmt(sdis))
        self.assertAlmostEqual(sdis, 990 / 3, 6)
    def test1(self):
        print("\n   SalesmanProblem Test Manhattan\n")
        np = 10
        pars = numpy.arange(np * np, dtype=int)

        problem = self.initProblem(np=np, distance="manhattan")
        print(problem)

        mdis = problem.minimumDistance()
        print("mindis  ", mdis)

        dis = problem.result(pars)
        sdis = numpy.sum(dis)
        print(fmt(dis, max=None), fmt(sdis))
        self.assertAlmostEqual(sdis, 198, 6)

        problem = self.initProblem(np=np, distance="manhattan", scale=3)
        dis = problem.result(pars)
        sdis = numpy.sum(dis)
        print(fmt(dis, max=None), fmt(sdis))
        self.assertAlmostEqual(sdis, 198 / 3, 6)
Example #10
0
    def test6(self):
        npt = 401

        t, y = self.makeData()

        t = numpy.linspace(0, 100, npt, dtype=float)
        ym = 2 * numpy.sin(2 * math.pi * numpy.exp(t / 60) + 1) * numpy.exp(
            -0.02 * t)
        y = numpy.random.seed(12345)
        y = ym + numpy.random.randn(npt) * 0.05

        kn = [0, 25, 50, 60, 70, 80, 90, 100]
        kn = [
            0.000, 17.254, 33.456, 42.755, 61.243, 62.538, 74.369, 89.854,
            93.388, 100.000
        ]

        m = BasicSplinesModel(knots=kn)
        ftr = Fitter(t, m, fixedScale=0.05)
        par = ftr.fit(y)
        lz0 = ftr.getLogZ(limits=[-10, +10])
        print(fmt(par, max=None), fmt(lz0))

        m = BasicSplinesModel(knots=kn)
        ftr = Fitter(t, m)
        par = ftr.fit(y)
        lz0 = ftr.getLogZ(limits=[-10, +10])
        print(fmt(par, max=None), fmt(lz0))

        m = BasicSplinesModel(knots=kn)
        ftr = Fitter(t, m)
        par = ftr.fit(y)
        lz0 = ftr.getLogZ(limits=[-10, +10], noiseLimits=[0.01, 1])
        print(fmt(par, max=None), fmt(lz0))
    def plot1(self):
        x = numpy.linspace(0, 10, 101, dtype=float)
        y = numpy.sin(x)
        kn1 = numpy.linspace(0, 10, 11, dtype=float)
        sm1 = BasicSplinesModel(knots=kn1)
        ftr = Fitter(x, sm1)
        par1 = ftr.fit(y)
        print(fmt(par1, max=None))

        plt.plot(x, y, 'k.')
        plt.plot(x, sm1.result(x, par1))

        plt.show()
    def bstest6(self, kn, order=3):
        print("==== test 6 ====================")

        x = numpy.linspace(min(kn), max(kn), 101, dtype=float)

        n = 0
        cc = ['k-', 'b-', 'r-', 'g-', 'c-', 'm-']

        sm = BasicSplinesModel(knots=kn, order=order)
        bm = BSplinesModel(knots=kn, order=order)
        par = numpy.ones(bm.npars, dtype=float)

        ysm = sm.result(x, par)
        pts = sm.partial(x, par)

        ybm = bm.result(x, par)
        ptb = bm.partial(x, par)

        print(fmt(numpy.sum(pts, 0), max=None))
        print(fmt(numpy.sum(ptb, 0), max=None))

        if self.doplot:

            for k in kn:
                plt.plot([k, k], [0, 1], 'k:')

            plt.plot(x, ybm, 'b-')
            plt.plot(x, ysm + 1.1, 'k-')
            for i in range(bm.npars):
                #                plt.plot( x, ptb[:,i] - pts[:,i], cc[2] )
                plt.plot(x, ptb[:, i], cc[2])
                plt.plot(x, pts[:, i] + 1.1, cc[3])

            plt.show()

        assertAAE(ysm, ybm)
        if order > 0:
            assertAAE(pts, ptb)
    def test4(self):
        print("======= Neural Net Utilities  test 4 ========================")

        con = NeuralNetUtilities.ConnectWithBias(ndim=2, ndout=3)
        atn = NeuralNetUtilities.Logistic()

        print(con.ndim, con.ndout, con.nraster)

        self.assertTrue(con.nraster == 6)

        xx = numpy.array([[1, 2], [2, 3], [3, 4], [4, 5]], dtype=float)
        par = numpy.arange(9, dtype=float) + 1

        print(fmt(xx))
        print(fmt(par, max=None))

        res = atn.result(con.result(xx, par), par)
        print("result  ", res.shape)
        print(fmt(res))

        partial = atn.derivative(con.partial(xx, par), par)
        print("partial ", partial.shape)
        print(fmt(partial, max=None))
Example #14
0
    def stdstarttest(self, mystarteng, np=4, nwalker=10):

        problem = self.initProblem(np=np)

        errdis = DistanceCostFunction()

        n2 = np * np
        pars = numpy.arange(n2, dtype=int)
        fi = numpy.arange(n2, dtype=int)
        sl = WalkerList(problem, nwalker, pars, fi)

        steng = mystarteng(sl, errdis, verbose=5)
        for wlkr in steng.walkers:
            logL = errdis.logLikelihood(problem, wlkr.allpars)
            wid = wlkr.id
            print("Walker :", wid, wlkr.allpars, fmt(logL))
            steng.execute(wid, -math.inf)

            nwlk = steng.walkers[wid]
            print("          ", nwlk.allpars, fmt(nwlk.logL))

            psort = numpy.sort(nwlk.allpars)
            assertAE(psort, pars)
Example #15
0
    def test4(self):
        print("******ASTROPY MODEL 4***********************")
        gm = modeling.models.Gaussian1D()

        #        print( gm.__class__ )
        #        print( gm )

        apm = AstropyModel(gm)
        apm.setPrior(0, ExponentialPrior(scale=10))
        apm.setPrior(1, UniformPrior(limits=[-10, 10]))
        apm.setPrior(2, JeffreysPrior(limits=[0.1, 10]))

        bfm = PolynomialModel(1)
        bfm.setPrior(0, UniformPrior(limits=[-5, 5]))

        m = apm + bfm
        p = numpy.asarray([1.2, -0.1, 30, 1.0, 0.3], dtype=float)

        N = 201
        x = numpy.arange(N, dtype=float) / 25 - 2

        y = (x - 0.70) / 0.4
        y *= -0.5 * y
        y = 8.0 * numpy.exp(y)
        y += 0.2 * x + 1.0
        numpy.random.seed(13456)
        y += 0.5 * numpy.random.randn(N)

        ns = NestedSampler(x, m, y)
        ns.distribution.setLimits([0.01, 10])
        ns.verbose = 2

        evi = ns.sample(plot=self.doplot)
        print("NS pars ", fmt(ns.parameters))
        print("NS stdv ", fmt(ns.stdevs))
        print("NS scal ", fmt(ns.scale))
    def test2(self):
        print("\n   SalesmanProblem Test Euclidic\n")
        np = 10
        pars = numpy.arange(np * np, dtype=int)

        problem = self.initProblem(np=np)
        print(problem)

        mdis = problem.minimumDistance()
        print("mindis  ", mdis)

        dis = problem.result(pars)
        sdis = numpy.sum(dis)
        print(fmt(dis, max=None), fmt(sdis))
        print(sdis, (90 + 9 * 9.05538514 + 12.72792206))
        self.assertAlmostEqual(sdis, (90 + 9 * 9.05538514 + 12.72792206), 6)

        problem = self.initProblem(np=np, weights=True)
        dis = problem.result(pars)
        sdis = numpy.sum(dis)
        print(fmt(dis, max=None), fmt(sdis))
        print(sdis, 2 * (90 + 9 * 9.05538514 + 12.72792206))
        self.assertAlmostEqual(sdis, 2 * (90 + 9 * 9.05538514 + 12.72792206),
                               6)
Example #17
0
    def histo(self, x, pr, fun=None):
        print(pr)
        print(fmt(x))
        print(fmt(fun[0]))
        print(fmt(fun[1]))

        if self.doplot:
            num_bins = 80
            # the histogram of the data
            n, bins, patches = plt.hist(x,
                                        num_bins,
                                        facecolor='green',
                                        alpha=0.5)

            # add a 'best fit' line
            if fun is not None:
                plt.plot(fun[0], fun[1], 'r--')
            plt.xlabel('Error')
            plt.ylabel('Probability')
            plt.title('Histogram of ' + str(pr))

            # Tweak spacing to prevent clipping of ylabel
            plt.subplots_adjust(left=0.15)
            plt.show()
    def testBernoulliErrorDistribution(self):
        print(
            "====== Test Bernoulli Error Distribution ======================")
        poly = LogisticModel(fixed={0: 1})
        param = numpy.asarray([0.5, 1.0], dtype=float)
        data = numpy.asarray([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], dtype=int)
        data = numpy.asarray([1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], dtype=int)

        print("x    : ", fmt(self.x, max=None))
        print("Data : ", fmt(data, max=None))
        print("yfit : ", fmt(poly.result(self.x, param), max=None))

        problem = ClassicProblem(model=poly, xdata=self.x, ydata=data)

        ped = BernoulliErrorDistribution()
        print(str(ped))

        self.assertFalse(ped.acceptWeight())

        logL = ped.logLikelihood(problem, param)
        print("logL  = %8.3f" % (logL))

        logL = ped.logLikelihood(problem, param)
        mok = problem.result(param)
        altL = ped.logLikelihood_alt(problem, param)

        lLdata = ped.logLdata(problem, param)
        print("Ldata: ", fmt(lLdata, max=None))
        logL0 = numpy.sum(lLdata)
        print("logL  =  %8.3f  ldata %8.3f  alt %8.3f" % (logL, logL0, altL))
        assertAAE(logL, altL)
        assertAAE(logL, logL0)

        print("logL  = %8.3f  %8.3f" % (logL, altL))
        assertAAE(logL, altL)

        fitIndex = [0, 1]
        dL = ped.partialLogL(problem, param, fitIndex)
        nL = ped.numPartialLogL(problem, param, fitIndex)
        aL = ped.partialLogL_alt(problem, param, fitIndex)
        print("partial = ", dL)
        print("altpart = ", aL)
        print("numpart = ", nL)
        assertAAE(dL, nL, 5)

        print("             ", fmt([4.0 / (k + 1) for k in range(9)],
                                   max=None))
        for i in range(10):
            param = numpy.asarray([i - 4, 1], dtype=float)
            print(fmt(param[0]), "  :  ", end="")
            for k in range(9):
                param[1] = 4.0 / (k + 1)
                print(" %8.3f" % ped.logLikelihood(problem, param), end="")

            print("")
Example #19
0
    def dofit(self, ns, pp, plot=False):
        logE = ns.sample(plot=plot)

        par = ns.parameters
        std = ns.standardDeviations
        mlp = ns.samples.maxLikelihoodParameters
        scale = ns.scale
        scdev = ns.stdevScale
        print("truth  ", fma(pp))
        print("par    ", fma(par))
        print("st dev ", fma(std))
        print("ML par ", fma(mlp))
        print("scale  ", fmt(scale))
        #        ns.report( )

        self.assertTrue(all(numpy.abs(par - mlp) < 2 * std))
        self.assertTrue(all(numpy.abs(par - pp) < 2 * std))
Example #20
0
    def test2(self):
        print("===== formatter test2 ===========================")

        arr = numpy.asarray([k for k in range(36)], dtype=float)
        arr = arr.reshape((3, 12))

        fmtinit(max=None)
        print(fmt(arr, max=None))
        fmtinit(linelength=60)
        print(fmt(arr, max=None))
        fmtinit(linelength=80, format={"float64": " %7.2f"})
        print(fmt(arr, max=None))

        print("arr", fmt(arr, indent=4, format=" %7.2f"))
        print(fmt(arr, max=2))
        alist = [1, 2, 3, 4, 5]
        print(fmt(alist))
        self.assertTrue(isinstance(alist, list))
        print(fmt(3), fmt(3.4))
Example #21
0
    def test1(self):
        print("===== formatter test1 ===========================")

        arr = numpy.asarray([k for k in range(120)], dtype=float)
        arr = arr.reshape((3, 40))

        print(fmt(arr, max=None))
        print("arr", fmt(arr[1], indent=4, format=" %7.2f", max=20))
        print(fmt(arr.reshape((3, 4, 10)), max=2))
        alist = [1, 2, 3, 4, 5]
        print(fmt(alist))
        self.assertTrue(isinstance(alist, list))
        print(fmt(3), fmt(3.4))
Example #22
0
    def XXXtest6(self):
        print("====test6 CategoricalProblem============================")

        x = numpy.array([[1, 4, 2, 1, 3, 2, 4, 2, 3, 2, 1, 2, 3]],
                        dtype=float).transpose()
        y = numpy.array([1, 2, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 2])

        #        w = numpy.array( [0.9,1.0,1.1,1.2], dtype=float )

        mdl = DecisionTreeModel(ndim=1,
                                depth=2,
                                kdim=[0, 0, 0],
                                split=0.5,
                                itypes=[0])
        p = [0.1, 0.5, 0.6, 0.4, 0.2, 0.3, 0.7, 0.3, 0.7, 0.2, 0.1, 0.3]
        print(mdl.fullName())

        problem = CategoricalProblem(model=mdl, xdata=x, ydata=y)

        print(problem.ncateg, problem.npars, fmt(p, max=None))
        print(fmt(problem.ydata, max=None))
        print(fmt(x, max=None))
        print(fmt(mdl.sortXdata(x), max=None))

        lst = [k for k in range(len(p))]
        ym = problem.result(p)
        yl = problem.result(lst)
        dy = problem.partial(p)

        print(fmt(ym, max=None))
        print(fmt(yl, max=None))
        print(fmt(dy, max=None))

        res = problem.residuals(p)

        print(fmt(res, max=None))
Example #23
0
    def test5a(self):
        print("====test5a==discard===================")
        plot = self.doplot

        nn = 10
        x = numpy.linspace(0, 2, nn, dtype=float)
        ym = 0.3 + 0.5 * x
        nf = 0.1
        numpy.random.seed(2345)
        noise = numpy.random.randn(nn)

        y = ym + nf * noise
        limits = [-1, 2]

        model = PolynomialModel(1)
        model.setLimits(lowLimits=limits[0], highLimits=limits[1])

        s = 0.0
        s2 = 0.0
        mr = 5
        for k in [1, 5, 10, 20, 40]:
            dis = GaussErrorDistribution(scale=0.5)
            ns = NestedSampler(x,
                               model,
                               y,
                               distribution=dis,
                               verbose=0,
                               discard=k)

            logE = ns.sample()
            par2 = ns.parameters
            logz2 = ns.logZ
            dlz2 = ns.logZprecision
            s += logz2
            s2 += logz2 * logz2
            print(fmt(k), "  pars  ", fmt(par2), "  logZ  ", fmt(logz2),
                  " +- ", fmt(dlz2))

        logz = s / mr
        dlz = math.sqrt(s2 / mr - logz * logz)

        print("Average  ", fmt(logz), " +- ", fmt(dlz))
    def test2(self):
        plot = self.doplot

        ndata = 101
        c0 = 3.2
        c1 = -0.1
        c2 = 0.3
        c3 = 1.1
        c4 = 2.1
        ss = 0.2

        x = numpy.linspace(-1, +1, ndata, dtype=float)
        y = (x - c1) / c2
        numpy.random.seed(12345)
        y = c0 * numpy.exp(
            -0.5 * y * y) + x * c3 + c4 + ss * numpy.random.randn(ndata)

        print("Testing Nonlinear Fitters with RobustShell.")

        print(fmt([c0, c1, c2, c4, c3]))

        modl2 = GaussModel()
        modl2 += PolynomialModel(1)

        #        lmfit = CurveFitter( x, modl2 )
        lmfit = LevenbergMarquardtFitter(x, modl2)
        par2 = lmfit.fit(y)
        std2 = lmfit.stdevs
        print(fmt(par2, max=5))
        print(fmt(std2, max=5))

        # make some outliers
        ko = [10 * k + 4 for k in range(10)]
        ko = numpy.asarray(ko)
        y[ko] += numpy.linspace(-5, 2, 10)

        if plot:
            plt.plot(x, y, 'k.')
            plt.plot(x, modl2(x), 'k-')


#        lmfit = CurveFitter( x, modl2 )
        lmfit = LevenbergMarquardtFitter(x, modl2)
        #        lmfit.setParameters( initpar2 )
        rf = RobustShell(lmfit)
        #        rf.setVerbose( 1 )
        print(str(rf))
        par1 = rf.fit(y)
        std1 = rf.stdevs
        print(fmt(par1, max=5))
        print(fmt(std1, max=5))
        print(fmt(par2, max=5))
        print(fmt(rf.weights[ko], max=20))
        if plot:
            plt.plot(x, modl2(x), 'g-')
            plt.plot(x, rf.weights, 'g-')
        assertAAE(par2, par1, 1)
        assertAAE(std2, std1, 1)

        #        lmfit = CurveFitter( x, modl2 )
        lmfit = LevenbergMarquardtFitter(x, modl2)
        #        lmfit.setParameters( initpar2 )
        rf = RobustShell(lmfit, onesided="negative")
        #        rf.setVerbose( 1 )
        print(rf)
        par3 = rf.fit(y)
        std3 = rf.stdevs
        print(fmt(par3, max=5))
        print(fmt(std3, max=5))
        print(fmt(par2, max=5))
        print(fmt(rf.weights[ko], max=20))

        if plot:
            plt.plot(x, modl2(x), 'r-')
            plt.plot(x, rf.weights, 'r-')
            plt.show()
        assertAAE(par2, par3, 1)
        assertAAE(std2, std3, 1)
    def test1(self):
        """     #   test slope fit  """

        print("\n   Robust fitter Test 1  \n")

        plot = self.doplot

        ndata = 101
        aa = 5.0  #  average offset
        bb = 2.0  #  slope
        ss = 0.3  #  noise Normal distr.

        x = numpy.linspace(-1, +1, ndata, dtype=float)
        numpy.random.seed(12345)
        y = aa + bb * x + ss * numpy.random.randn(ndata)

        model = PolynomialModel(1)
        fitter = Fitter(x, model)

        print("Testing Straight Line fit")

        par = fitter.fit(y)
        std = fitter.stdevs
        chisq = fitter.chisq
        print("truth   " + fmt(aa) + fmt(bb))
        print("params  " + fmt(par))
        print("stdevs  " + fmt(std))
        print("chisq   " + fmt(chisq))
        assertAAE(par, numpy.asarray([aa, bb]), 2)

        if plot:
            plt.plot(x, y, 'k*')
            plt.plot(x, model(x), 'k-')

        # make some outliers
        ko = [10 * k + 4 for k in range(10)]
        ko = numpy.asarray(ko)
        y[ko] += numpy.linspace(-5, 2, 10)

        romod = PolynomialModel(1)
        altfit = Fitter(x, romod)
        alt = altfit.fit(y)
        ast = altfit.stdevs
        altch = altfit.chisq
        print("params  " + fmt(alt))
        print("stdevs  " + fmt(ast))
        print("chisq   " + fmt(altch))

        if plot:
            plt.plot(x, y, 'b.')
            plt.plot(x, romod(x), 'b-')

        rf = RobustShell(altfit)
        Tools.printclass(rf)

        alt = rf.fit(y)
        ast = altfit.stdevs
        altch = altfit.chisq
        print(rf)
        print("params  " + fmt(alt))
        print("stdevs  " + fmt(ast))
        print("chisq   " + fmt(altch) + fmt(rf.scale))
        print("weight  " + fmt(rf.weights[ko], max=None))
        if plot:
            plt.plot(x, romod(x), 'g-')
            plt.plot(x, rf.weights, 'g-')
        assertAAE(par, alt, 1)
        assertAAE(std, ast, 1)

        rf = RobustShell(altfit, kernel=Cosine(), domain=4.0)
        alt = rf.fit(y)
        ast = altfit.stdevs
        altch = altfit.chisq
        print(rf)
        print("params  " + fmt(alt))
        print("stdevs  " + fmt(ast))
        print("chisq   " + fmt(altch) + fmt(rf.scale))
        print("weight  " + fmt(rf.weights[ko], max=None))
        if plot:
            plt.plot(x, romod(x), 'r-')
            plt.plot(x, rf.weights, 'r-')
        assertAAE(par, alt, 1)
        assertAAE(std, ast, 1)

        rf = RobustShell(altfit, kernel=Huber, domain=1.0)
        #        rf.setNoiseScale( 0.3 )
        alt = rf.fit(y)
        ast = altfit.stdevs
        altch = altfit.chisq
        print(rf)
        print("params  " + fmt(alt))
        print("stdevs  " + fmt(ast))
        print("chisq   " + fmt(altch) + fmt(rf.scale))
        print("weight  " + fmt(rf.weights[ko], max=None))
        if plot:
            plt.plot(x, romod(x), 'c-')
            plt.plot(x, rf.weights, 'c-')
        assertAAE(par, alt, 1)
        assertAAE(std, ast, 1)

        rf = RobustShell(altfit, kernel=Uniform)
        alt = rf.fit(y)
        ast = altfit.stdevs
        altch = altfit.chisq
        print(rf)
        print("params  " + fmt(alt))
        print("stdevs  " + fmt(ast))
        print("chisq   " + fmt(altch) + fmt(rf.scale))
        print("weight  " + fmt(rf.weights[ko], max=None))
        if plot:
            plt.plot(x, romod(x), 'm-')
            plt.plot(x, rf.weights, 'm-')
            plt.show()
        assertAAE(par, alt, 1)
        assertAAE(std, ast, 1)
Example #26
0
    def test5(self):
        print("5  Test Dynamic Modifiable Splines: evidence with fixed scale ")

        t, y = self.makeData()

        #        npt = 201
        #        t = numpy.linspace( 0, 100, npt, dtype=float )
        #        ym = 2 * numpy.sin( 2 * math.pi * numpy.exp( t / 80 ) +1 ) * numpy.exp( -0.02 * t )
        #        y = numpy.random.seed( 12345 )
        #        y = ym + numpy.random.randn( npt ) * 0.05

        knots = [0, 100]
        mxk = 15
        mdl = SplinesDynamicModel(knots=knots,
                                  dynamic=True,
                                  maxKnots=mxk,
                                  minDistance=0.04)
        mdl.setLimits(lowLimits=[-10.0], highLimits=[+10.0])

        ep = EvidenceProblem(model=mdl, xdata=t, ydata=y)
        distr = ModelDistribution(scale=0.1)

        ns = NestedSampler(problem=ep, distribution=distr)

        ns.verbose = 2
        ns.minimumIterations = 2000
        ## Comment next if-statement out for a full run of NestedSampler
        if not self.dofull:
            ns.ensemble = 10
            ns.minimumIterations = 500

        evid = ns.sample(plot=self.doplot)

        if not self.doplot: return

        ## Plot the evolutie of knots and sample weights
        cc = ['k,', 'b,', 'r,', 'g,', 'c,', 'm,']
        sl = ns.samples
        ka = numpy.zeros((mxk, len(sl)), dtype=float)
        plt.figure(1, figsize=[14, 8])
        for k, s in enumerate(sl):
            n = len(s.model.knots)
            ka[:n, k] = s.model.knots
        for j in range(mxk):
            plt.plot(ka[j, :], cc[j % 6])
        wgts = sl.getWeightEvolution()
        mw = max(wgts)
        plt.plot(100 * wgts / mw, 'k-')
        plt.xlabel("Iteration number")
        plt.ylabel("Knot position cq. sample weight")
        plt.show()

        plt.figure(2, figsize=[14, 8])
        plt.plot(t, y, 'k.')
        cc = ['k-', 'b-', 'r-', 'g-', 'c-', 'm-', 'y-']
        cp = ['k*', 'b*', 'r*', 'g*', 'c*', 'm*', 'y*']
        for k in range(0, 2100, 200):
            kc = k % 7
            s = sl[k]
            mdl = s.model
            kn = mdl.knots
            plt.plot(kn, [-1 + k / 1000] * len(kn), cp[kc])
            plt.plot(t, mdl(t), cc[kc])
            print(fmt(k))
            print(fmt(kn, max=None))
            print(fmt(mdl.parameters, max=None), fmt(s.logL))

            m = BasicSplinesModel(knots=kn)
            ftr = Fitter(t, m, fixedScale=0.05)
            par = ftr.fit(y)
            lz0 = ftr.getLogZ(limits=[-10, +10])
            print(fmt(par, max=None), fmt(lz0))

            m = BasicSplinesModel(knots=kn)
            ftr = Fitter(t, m)
            par = ftr.fit(y)
            lz0 = ftr.getLogZ(limits=[-10, +10])
            print(fmt(par, max=None), fmt(lz0))

            m = BasicSplinesModel(knots=kn)
            ftr = Fitter(t, m)
            par = ftr.fit(y)
            lz0 = ftr.getLogZ(limits=[-10, +10], noiseLimits=[0.01, 1])
            print(fmt(par, max=None), fmt(lz0))

        plt.show()
    def XXXtestNestedSampler2( self ) :
        print( "========================" )
        print( "  Test Nested Sampler 2" )
        print( "========================" )

        ND = 10
        NP = 100

        numpy.random.seed( 12345 )
        xdata = numpy.random.rand( NP, ND ) * 10
        print( fmt( xdata ) )

        y = 0.5 * xdata[:,1]
        print( xdata.shape, y.shape )
        y += numpy.where( xdata[:,4] > 3, 5, 0 )
        y += numpy.where( xdata[:,6] > 8, 0, 3 )
        y += numpy.where( xdata[:,4] > 7, 2, 0 )

        noise = numpy.random.randn( NP )
        y += 0.02 * noise

        pm = DecisionTreeModel( ndim=ND, kdim=[0], depth=0 )
        print( pm )

        lolim = [-10]
        hilim = [+10]
        pm.setLimits( lowLimits=lolim, highLimits=hilim )
        Tools.printclass( pm )

        ed = ModelLikelihood( limits=[0.01,100] )

        engs = ["birth", "death", "struct"]
#        engs = ["birth", "struct"]
        ns = NestedSampler( xdata, pm, y, ensemble=100, distribution=ed,
                            engines=engs, seed=2031967 )

#        ns.minimumIterations = 4000
        ns.verbose = 2
#        ns.weed = 10000

        logE = ns.sample( )

        sl = ns.samples

        yfit = sl.average( xdata )

        ksrt = numpy.argsort( yfit )
        xxx = numpy.arange( NP, dtype=float )

        mi = sl.medianIndex

        print( mi, sl.modusIndex, len( sl ) )

        if not self.doplot : return

        plt.plot( xxx, y[ksrt], 'k.' )
        plt.plot( xxx, yfit[ksrt], 'r-' )

        for k in range( mi-3, mi+4 ) :
            mdl = sl[k].model
            print( mdl.fullName() )
            ymod = mdl.result( xdata, sl[k].parameters )

            plt.plot( xxx, ymod[ksrt], 'g-' )

        print( ymod )
        print( ksrt )

        plt.show()

        print( ymod[ksrt] )
    def testNestedSampler( self ) :
        print( "========================" )
        print( "  Test Nested Sampler" )
        print( "========================" )

        ND = 10
        NP = 100

        numpy.random.seed( 12345 )
        xdata = numpy.random.rand( NP, ND ) * 10
        print( fmt( xdata ) )

        y = 0.5 * xdata[:,1]
        print( xdata.shape, y.shape )
        y += numpy.where( xdata[:,4] > 3, 5, 0 )
        y += numpy.where( xdata[:,6] > 8, 0, 3 )
        y += numpy.where( xdata[:,4] > 7, 2, 0 )

        noise = numpy.random.randn( NP )
        y += 0.02 * noise

        pm = DecisionTreeModel( ndim=ND, kdim=[0], depth=0 )
        print( pm )

        lolim = [-10]
        hilim = [+10]
        pm.setLimits( lowLimits=lolim, highLimits=hilim )
        Tools.printclass( pm )

        ns = NestedSampler( xdata, pm, y, ensemble=100, seed=2031967 )

        ns.verbose = 2
        ns.weed = 10000
        ns.distribution.setLimits( [0.01, 100] )
        if not self.dofull :
            ns.ensemble = 10

        logE = ns.sample( )

        sl = ns.samples

        yfit = sl.average( xdata )

#        ksrt = numpy.argsort( yfit )
        xxx = numpy.arange( NP, dtype=float )

        mi = sl.medianIndex

        print( mi, sl.modusIndex, len( sl ) )

        if not self.doplot : return

        mdl = sl[mi].model
        ksrt = mdl.sortXdata( xdata )
        plt.plot( xxx, y[ksrt], 'k.' )
        plt.plot( xxx, yfit[ksrt], 'r-' )

        for k in range( mi-3, mi+4 ) :
            mdl = sl[k].model
            print( mdl.fullName() )
            ymod = mdl.result( xdata, sl[k].parameters )

            plt.plot( xxx, ymod[ksrt], 'g-' )

        print( ymod )
        print( ksrt )
        print( ymod[ksrt] )

        plt.show()
    def test6( self ):
        print( "  Test 6 DecisionTreeModel" )
        dtm = DecisionTreeModel( ndim=20, kdim=[0,1,2,3,4,5,6],
                    split=[0.1*k for k in range(2,8)], depth=3 )
        dtm.parameters = numpy.arange( dtm.npars, dtype=float ) + 1

        print( dtm.fullName() )
        print( fmt( dtm.parameters, max=None ) )
        self.assertTrue( dtm.npbase == dtm.npars )
        self.assertTrue( dtm.npars == dtm.countLeaf() )
        self.assertTrue( dtm.ncomp == dtm.countBranch() )


        print( "GROW    at location 2 dim 3 split 0.44" )
        dtm.grow( offset=0, location=2, kdim=3, split=0.44 )
        print( dtm )
        print( fmt( dtm.parameters, max=None ) )
        self.assertTrue( dtm.npbase == dtm.npars )
        self.assertTrue( dtm.npars == dtm.countLeaf() )
        self.assertTrue( dtm.ncomp == dtm.countBranch() )

        print( "VARY    at location 4, dim=5, split=0.55" )
        dtm.vary( location=4, kdim=5, split=0.55 )
        print( dtm )
        print( fmt( dtm.parameters, max=None ) )
        self.assertTrue( dtm.npbase == dtm.npars )
        self.assertTrue( dtm.npars == dtm.countLeaf() )
        self.assertTrue( dtm.ncomp == dtm.countBranch() )

        print( "GROW    at location 8" )
        dtm.grow( offset=0, location=8 )
        print( dtm )
        print( fmt( dtm.parameters, max=None ) )
        self.assertTrue( dtm.npbase == dtm.npars )
        self.assertTrue( dtm.npars == dtm.countLeaf() )
        self.assertTrue( dtm.ncomp == dtm.countBranch() )
        self.assertTrue( len( dtm.parNames ) == dtm.npars )

        print( "SHRINK  at location 7" )
        dtm.shrink( offset=0, location=7 )
        print( dtm )
        print( fmt( dtm.parameters, max=None ) )
        self.assertTrue( dtm.npbase == dtm.npars )
        self.assertTrue( dtm.npars == dtm.countLeaf() )
        self.assertTrue( dtm.ncomp == dtm.countBranch() )

        print( "SHRINK  at location 3" )
        dtm.shrink( offset=0, location=3 )
        print( dtm )
        print( fmt( dtm.parameters, max=None ) )
        self.assertTrue( dtm.npbase == dtm.npars )
        self.assertTrue( dtm.npars == dtm.countLeaf() )
        self.assertTrue( dtm.ncomp == dtm.countBranch() )

        print( "SHRINK  at location 0" )
        dtm.shrink( offset=0, location=0 )
        print( dtm.fullName() )
        print( fmt( dtm.parameters, max=None ) )
        self.assertTrue( dtm.npbase == dtm.npars )
        self.assertTrue( dtm.npars == dtm.countLeaf() )
        self.assertTrue( dtm.ncomp == dtm.countBranch() )

        printclass( dtm )
Example #30
0
    def test7(self):
        print("7  Test Dynamic Modifiable Splines: evidence unknown scale")

        t, y = self.makeData()

        knots = [0, 100]
        mxk = 15
        mdl = SplinesDynamicModel(knots=knots,
                                  dynamic=True,
                                  maxKnots=mxk,
                                  minDistance=0.01)
        mdl.setLimits(lowLimits=[-10.0], highLimits=[+10.0])

        ep = EvidenceProblem(model=mdl, xdata=t, ydata=y)
        distr = ModelDistribution(limits=[0.01, 1])
        #ns = NestedSampler( t, mdl, y, seed=1235, engines=eng, distribution=distr )
        #print( ns.problem )
        #print( ns.model )
        #print( fmt( ns.xdata ) )
        #print( fmt( ns.ydata ) )

        ns = NestedSampler(problem=ep, distribution=distr)

        print(ns.problem)
        print(ns.model)
        print(fmt(ns.xdata))
        print(fmt(ns.ydata))
        ns.verbose = 2

        ## Comment next if-statement out for a full run of NestedSampler
        if not self.dofull:
            ns.ensemble = 10
            ns.minimumIterations = 500

        evid = ns.sample(plot=self.doplot)

        if not self.doplot: return

        ## Plot the evolutie of knots and sample weights
        cc = ['k,', 'b,', 'r,', 'g,', 'c,', 'm,']
        sl = ns.samples
        ka = numpy.zeros((mxk, len(sl)), dtype=float)
        plt.figure(1, figsize=[14, 8])
        for k, s in enumerate(sl):
            n = len(s.model.knots)
            ka[:n, k] = s.model.knots
        for j in range(mxk):
            plt.plot(ka[j, :], cc[j % 6])
        wgts = sl.getWeightEvolution()
        mw = max(wgts)
        plt.plot(100 * wgts / mw, 'k-')
        plt.xlabel("Iteration number")
        plt.ylabel("Knot position cq. sample weight")
        plt.show()

        plt.figure(2, figsize=[14, 8])
        plt.plot(t, y, 'k.')
        cc = ['k-', 'b-', 'r-', 'g-', 'c-', 'm-', 'y-']
        cp = ['k*', 'b*', 'r*', 'g*', 'c*', 'm*', 'y*']
        for k in range(0, 2100, 200):
            kc = k % 7
            s = sl[k]
            mdl = s.model
            kn = mdl.knots
            plt.plot(kn, [-1 + k / 1000] * len(kn), cp[kc])
            plt.plot(t, mdl(t), cc[kc])
            print(fmt(k))
            print(fmt(kn, max=None))
            print(fmt(mdl.parameters, max=None), fmt(s.logL))

        plt.show()