Example #1
0
	def __init__(self, tagsets, model_dir, ratio_thres = 0.8, max_num = 2, \
				slot_prob_thres = 0.6, value_prob_thres = 0.8, \
				mode = 'hr', bs_mode = 'enhance', bs_alpha = 0.0, \
				unified_thres = 0.5):
		self.tagsets = tagsets
		self.frame = {}
		self.memory = {}
		self.beliefstate = BeliefState(bs_mode, bs_alpha)

		self.slot_prob_threshold = slot_prob_thres
		self.value_prob_threshold = value_prob_thres
		self.ratio_thres = ratio_thres

		self.unified_thres = unified_thres
		self.slot_prob_factor = math.log(self.unified_thres, self.slot_prob_threshold)
		self.value_prob_factor = math.log(self.unified_thres, self.value_prob_threshold)
		self.ratio_thres_factor = math.log(self.unified_thres, self.ratio_thres)

		self.mode = mode

		self.svc = slot_value_classifier()
		self.svc.LoadModel(model_dir)

		self.tuple_extractor = Tuple_Extractor()
		self.rules = DSTC4_rules(tagsets)
		self.appLogger = logging.getLogger(self.MY_ID)

		if not self.svc.is_set:
			self.appLogger.error('Error: Fail to load slot_value_classifier model!')
			raise Exception('Error: Fail to load slot_value_classifier model!')
		self.value_extractor = value_extractor(tagsets, ratio_thres, max_num)
Example #2
0
	def __init__(self, tagsets, ratio_thres = 0.85, \
				bs_mode = 'enhance', bs_alpha = 0.0, \
				unified_thres = 0.5):
		self.tagsets = tagsets
		self.frame = {}
		self.memory = {}
		self.beliefstate = BeliefState(bs_mode, bs_alpha)

		self.ratio_thres = ratio_thres
		self.unified_thres = unified_thres

		self.ratio_thres_factor = math.log(self.unified_thres, self.ratio_thres)

		self.rules = DSTC4_rules(tagsets)
		self.appLogger = logging.getLogger(self.MY_ID)
	def __init__(self, tagsets, association_rule_file, semtagger_model, prob_threshold = 0.8, mode = 'exact', bs_mode = 'max', bs_alpha = 0.0, unified_thres=0.5):
		self.appLogger = logging.getLogger(self.MY_ID)		
		self.tagsets = tagsets

		self.unified_thres = unified_thres
		self.prob_threshold = prob_threshold
		self.prob_thres_factor = math.log(self.unified_thres, self.prob_threshold)

		input = codecs.open(association_rule_file, 'r', 'utf-8')
		self.association_rules = json.load(input)
		input.close()
		self.semtagger = SemanticTagger(semtagger_model)
		self.mode = mode

		self.beliefstate = BeliefState(bs_mode,bs_alpha)
		self.rules = DSTC4_rules(tagsets)
		self.reset()
class association_rule_tracker(object):
	MY_ID = 'association_rule_tracker'
	def __init__(self, tagsets, association_rule_file, semtagger_model, prob_threshold = 0.8, mode = 'exact', bs_mode = 'max', bs_alpha = 0.0, unified_thres=0.5):
		self.appLogger = logging.getLogger(self.MY_ID)		
		self.tagsets = tagsets

		self.unified_thres = unified_thres
		self.prob_threshold = prob_threshold
		self.prob_thres_factor = math.log(self.unified_thres, self.prob_threshold)

		input = codecs.open(association_rule_file, 'r', 'utf-8')
		self.association_rules = json.load(input)
		input.close()
		self.semtagger = SemanticTagger(semtagger_model)
		self.mode = mode

		self.beliefstate = BeliefState(bs_mode,bs_alpha)
		self.rules = DSTC4_rules(tagsets)
		self.reset()
		


	def addUtter(self, utter):
		self.appLogger.debug('utter_index: %d' % (utter['utter_index']))
		output = {'utter_index': utter['utter_index']}
		topic = utter['segment_info']['topic']
		if topic in self.tagsets:
			self._UpdateFrameProb(utter)
			self._UpdateFrame()
			self.frame = self.rules.prune_frame_label(topic, self.frame)
			output['frame_prob'] = copy.deepcopy(self.beliefstate.state)
			output['frame_label'] = copy.deepcopy(self.frame)
		return output

	def _get_prob(self, prob, occurrence_times, alpha = 2):
		return prob * (1.0 - 1.0 / (1 + occurrence_times**alpha) )

	def _get_frame(self, semtag, topic):
		candidate_frames = []
		semtag_key = 'SemTag_%s(%s)' %(semtag['tag'], '_'.join(semtag['content']))

		target_rules = self.association_rules[topic]

		if self.mode == 'exact':
			if semtag_key in target_rules['v']['rules']:
				for frame_key, frame_value in target_rules['v']['rules'][semtag_key].items():
					if frame_key.startswith('Frame'):
						slot = frame_key[frame_key.find('_') + 1: frame_key.find('(')]
						value = ' '.join(frame_key[frame_key.find('(') + 1 : frame_key.find(')')].split('_'))
						prob = self._get_prob(frame_value['prob'], frame_value['occurrence'])
						candidate_frames.append((slot,value,prob))
		elif self.mode == 'fuzzy':
			for key, frame_candidates in target_rules['v']['rules'].items():
				ratio = fuzz.ratio(semtag_key[7:], key[7:]) * 1.0 / 100

				for frame_key, frame_value in frame_candidates.items():
					if frame_key.startswith('Frame'):
						slot = frame_key[frame_key.find('_') + 1: frame_key.find('(')]
						value = ' '.join(frame_key[frame_key.find('(') + 1 : frame_key.find(')')].split('_'))
						prob = self._get_prob(frame_value['prob'], frame_value['occurrence']) * ratio
						candidate_frames.append((slot,value,prob))

		else:
			raise Exception('Error: unknown mode %s!' %(mode))

		return candidate_frames
	
	def _UpdateFrameProb(self, utter):
		topic = utter['segment_info']['topic']
		if utter['segment_info']['target_bio'] == 'B':
			self.frame = {}
			#self.frame_prob = {}
			self.beliefstate.reset()
		
		if topic in self.tagsets:
			transcript = utter['transcript']
			semtags = self.semtagger.ParseSent(transcript)
			for semtag in semtags:
				candidate_frames = self._get_frame(semtag, topic)
				for (slot, value, prob) in candidate_frames:
					#self._AddSLot2FrameProb(slot, -1)
					#self._AddSlotValue2FrameProb(slot,value,prob)
					self.beliefstate._AddSLot2State(slot, -1)
					normalised_prob = math.pow(prob, self.prob_thres_factor)
					self.beliefstate._AddSlotValue2State(slot,value,normalised_prob)



	def _UpdateFrame(self):
		self.frame = {}
		for slot in self.beliefstate.state:
			for value, prob in self.beliefstate.state[slot]['values'].items():
				if prob >= self.unified_thres:
					self._AddSlotValue2Frame(slot,value)
			

	def _AddSlotValue2Frame(self,slot,value):
		if slot not in self.frame:
			self.frame[slot] = []
		if value not in self.frame[slot]:
			self.frame[slot].append(value)





	def reset(self):
		self.frame = {}
		#self.frame_prob = {}
		self.memory = {}
		self.beliefstate.reset()
Example #5
0
class msiip_nsvc_tracker(object):
	MY_ID = 'msiip_baseline'
	def __init__(self, tagsets, ratio_thres = 0.85, \
				bs_mode = 'enhance', bs_alpha = 0.0, \
				unified_thres = 0.5):
		self.tagsets = tagsets
		self.frame = {}
		self.memory = {}
		self.beliefstate = BeliefState(bs_mode, bs_alpha)

		self.ratio_thres = ratio_thres
		self.unified_thres = unified_thres

		self.ratio_thres_factor = math.log(self.unified_thres, self.ratio_thres)

		self.rules = DSTC4_rules(tagsets)
		self.appLogger = logging.getLogger(self.MY_ID)


	def addUtter(self, utter):
		self.appLogger.debug('utter_index: %d' % (utter['utter_index']))
		output = {'utter_index': utter['utter_index']}
		topic = utter['segment_info']['topic']
		if topic in self.tagsets:
			self._UpdateFrameProb(utter)
			self._UpdateFrame()
			self.frame = self.rules.prune_frame_label(topic, self.frame)
			output['frame_prob'] = copy.deepcopy(self.beliefstate.state)
			output['frame_label'] = copy.deepcopy(self.frame)
		return output

	def _UpdateFrameProb(self, utter):
		topic = utter['segment_info']['topic']
		if utter['segment_info']['target_bio'] == 'B':
			self.frame = {}
			self.beliefstate.reset()
		
		if topic in self.tagsets:
			transcript = utter['transcript'].replace('Singapore', '')
			prob_frame_labels = {}
			for slot in self.tagsets[topic]:
				for value in self.tagsets[topic][slot]:
					ratio = fuzz.partial_ratio(value.lower(), transcript.lower()) * 1.0 / 100
					if ratio > self.ratio_thres:
						if slot not in prob_frame_labels:
							prob_frame_labels[slot] = {'prob':-1, 'values':{}}
						if value not in prob_frame_labels[slot]['values'] or ratio > prob_frame_labels[slot]['values'][value]:
							prob_frame_labels[slot]['values'][value] = ratio
			
			# normalise prob so as 0.5 is the threshold
			self._NormalisProb(prob_frame_labels)
			# update belief state
			self.beliefstate.AddFrame(prob_frame_labels)

	def _NormalisProb(self, prob_frame_labels):
		'''
		based on the threshold, normalise threshold to 0.5
		'''
		for slot in prob_frame_labels:
			for value, ratio in prob_frame_labels[slot]['values'].items():
				prob_frame_labels[slot]['values'][value] = math.pow(ratio, self.ratio_thres_factor)

	def _UpdateFrame(self):
		self.frame = {}
		for slot in self.beliefstate.state:
			for value, ratio in self.beliefstate.state[slot]['values'].items():
				if ratio >= self.unified_thres:
					self._AddSlotValue2Frame(slot,value)

	def _AddSlotValue2Frame(self,slot,value):
		if slot not in self.frame:
			self.frame[slot] = []
		if value not in self.frame[slot]:
			self.frame[slot].append(value)





	def reset(self):
		self.frame = {}
		self.memory = {}
		self.beliefstate.reset()
Example #6
0
class msiip_nsvc_tracker(object):
	MY_ID = 'msiip_nsvc'
	def __init__(self, tagsets, model_dir, ratio_thres = 0.8, max_num = 2, \
				slot_prob_thres = 0.6, value_prob_thres = 0.8, \
				mode = 'hr', bs_mode = 'enhance', bs_alpha = 0.0, \
				unified_thres = 0.5):
		self.tagsets = tagsets
		self.frame = {}
		self.memory = {}
		self.beliefstate = BeliefState(bs_mode, bs_alpha)

		self.slot_prob_threshold = slot_prob_thres
		self.value_prob_threshold = value_prob_thres
		self.ratio_thres = ratio_thres

		self.unified_thres = unified_thres
		self.slot_prob_factor = math.log(self.unified_thres, self.slot_prob_threshold)
		self.value_prob_factor = math.log(self.unified_thres, self.value_prob_threshold)
		self.ratio_thres_factor = math.log(self.unified_thres, self.ratio_thres)

		self.mode = mode

		self.svc = slot_value_classifier()
		self.svc.LoadModel(model_dir)

		self.tuple_extractor = Tuple_Extractor()
		self.rules = DSTC4_rules(tagsets)
		self.appLogger = logging.getLogger(self.MY_ID)

		if not self.svc.is_set:
			self.appLogger.error('Error: Fail to load slot_value_classifier model!')
			raise Exception('Error: Fail to load slot_value_classifier model!')
		self.value_extractor = value_extractor(tagsets, ratio_thres, max_num)


	def addUtter(self, utter):
		self.appLogger.debug('utter_index: %d' % (utter['utter_index']))
		output = {'utter_index': utter['utter_index']}
		topic = utter['segment_info']['topic']
		if topic in self.tagsets:
			self._UpdateFrameProb(utter)
			self._UpdateFrame()
			self.frame = self.rules.prune_frame_label(topic, self.frame)
			output['frame_prob'] = copy.deepcopy(self.beliefstate.state)
			output['frame_label'] = copy.deepcopy(self.frame)
		return output

	def _UpdateFrameProb(self, utter):
		topic = utter['segment_info']['topic']
		if utter['segment_info']['target_bio'] == 'B':
			self.frame = {}
			self.beliefstate.reset()
			
		if topic in self.tagsets:
			transcript = utter['transcript']
			svc_result, result_prob = self.svc.PredictUtter(utter, self.svc.feature.feature_list)
			tuples = []
			probs = []
			for key in svc_result:
				label = svc_result[key]
				prob = result_prob[key][1]
				if label == 1:
					tuples.append(key)
					probs.append(prob)

			self.appLogger.debug('transcript: %s' %(transcript))
			self.appLogger.debug('tuples: %s, probs: %s' %(tuples.__str__(), probs.__str__()))

			# get the prob_frame_labels for the single utterance
			prob_frame_labels = self.tuple_extractor.generate_frame(tuples, probs, self.mode)
			self._AddExtractValue(topic, transcript, prob_frame_labels)
			# normalise prob so as 0.5 is the threshold
			self._NormalisProb(prob_frame_labels)
			# update belief state
			self.beliefstate.AddFrame(prob_frame_labels)

	def _NormalisProb(self, prob_frame_labels):
		'''
		based on the threshold, normalise threshold to 0.5
		'''
		for slot in prob_frame_labels:
			if prob_frame_labels[slot]['prob'] != -1:
				prob_frame_labels[slot]['prob'] = math.pow(prob_frame_labels[slot]['prob'], self.slot_prob_factor)
			if self.tuple_extractor.enumerable(slot):
				for value, prob in prob_frame_labels[slot]['values'].items():
					prob_frame_labels[slot]['values'][value] = math.pow(prob, self.value_prob_factor)
			else:
				for value, ratio in prob_frame_labels[slot]['values'].items():
					prob_frame_labels[slot]['values'][value] = math.pow(ratio, self.ratio_thres_factor)
	
	def _AddExtractValue(self, topic, transcript, prob_frame_labels):
		'''
		extract values for non-enumerable slots
		'''
		for slot in prob_frame_labels:
			if slot in self.tagsets[topic]:
				if not self.tuple_extractor.enumerable(slot):
					value_list = self.value_extractor.ExtractValue(topic, slot, transcript)
					for value, ratio in value_list:
						prob_frame_labels[slot]['values'][value] = ratio * 1.0 / 100

	def _UpdateFrame(self):
		self.frame = {}
		for slot in self.beliefstate.state:
			if self.tuple_extractor.enumerable(slot):
				for value, prob in self.beliefstate.state[slot]['values'].items():
					if prob >= self.unified_thres:
						self._AddSlotValue2Frame(slot,value)
			else:
				if self.beliefstate.state[slot]['prob'] > self.unified_thres:
					for value, ratio in self.beliefstate.state[slot]['values'].items():
						if ratio >= self.unified_thres:
							self._AddSlotValue2Frame(slot,value)

	def _AddSlotValue2Frame(self,slot,value):
		if slot not in self.frame:
			self.frame[slot] = []
		if value not in self.frame[slot]:
			self.frame[slot].append(value)





	def reset(self):
		self.frame = {}
		self.memory = {}
		self.beliefstate.reset()
Example #7
0
 def __init__(self, playerNumber, initalState):
     self.id = playerNumber
     self.out = False
     self.belief = BeliefState(initalState, numParticles)
     print(f"Belief State for card 0: {self.belief.GetEstimateForCard(0)}")
     return
Example #8
0
 def __init__(self, player, initalState):
     self.id = player
     self.out = False
     self.belief = BeliefState(initalState, numParticles)
     return