Example #1
0
def count_alignments(bam_filename):
    import subprocess
    from Betsy import module_utils as mlib

    samtools = mlib.findbin("samtools")
    x = [samtools, "view", bam_filename]
    p = subprocess.Popen(x,
                         bufsize=0,
                         stdin=subprocess.PIPE,
                         stdout=subprocess.PIPE,
                         stderr=subprocess.STDOUT,
                         close_fds=True)
    r = p.stdout

    alignments = 0
    aligned_reads = {}
    for line in r:
        # M03807:17:000000000-AHGYH:1:2108:11122:14861 99 1 14172 0 12S128...
        # ST-J00106:110:H5NY5BBXX:4:1101:1702:1209 2:N:0:NTCACG   141     *
        x = line.split("\t")
        assert len(x) >= 11, "SAM format"
        qname, flag = x[:2]
        flag = int(flag)
        # 2  mapped in proper pair
        # 4  query is unmapped
        # 8  mate is unmapped
        #is_aligned = flag & 0x02
        is_aligned = not (flag & 0x04)
        if is_aligned:
            alignments += 1
            aligned_reads[qname] = 1
    aligned_reads = len(aligned_reads)
    return aligned_reads, alignments
Example #2
0
    def run(self, network, antecedents, out_attributes, user_options,
            num_cores, out_path):
        import os
        from genomicode import parallel
        from genomicode import alignlib
        from genomicode import filelib
        from Betsy import module_utils as mlib

        bam_node, ref_node = antecedents
        bam_filenames = mlib.find_bam_files(bam_node.identifier)
        assert bam_filenames, "No .bam files."
        ref = alignlib.create_reference_genome(ref_node.identifier)
        filelib.safe_mkdir(out_path)
        metadata = {}
        metadata["tool"] = "samtools %s" % alignlib.get_samtools_version()

        # list of (in_filename, err_filename, out_filename)
        jobs = []
        for in_filename in bam_filenames:
            p, f = os.path.split(in_filename)
            sample, ext = os.path.splitext(f)
            err_filename = os.path.join(out_path, "%s.log" % sample)
            out_filename = os.path.join(out_path, "%s.pileup" % sample)
            x = in_filename, err_filename, out_filename
            jobs.append(x)

        # samtools mpileup -f [reference sequence] [BAM file(s)]
        #   > myData.mpileup
        samtools = mlib.findbin("samtools")
        sq = mlib.sq
        commands = []
        for x in jobs:
            in_filename, err_filename, out_filename = x

            x = [
                sq(samtools),
                "mpileup",
                "-f",
                sq(ref.fasta_file_full),
            ]
            x.append(sq(in_filename))
            x = " ".join(map(str, x))
            x = "%s 2> %s 1> %s" % (x, err_filename, out_filename)
            commands.append(x)
        parallel.pshell(commands, max_procs=num_cores)
        metadata["num_cores"] = num_cores
        metadata["commands"] = commands

        x = [x[-1] for x in jobs]
        filelib.assert_exists_nz_many(x)

        return metadata
Example #3
0
    def run(self, network, in_data, out_attributes, user_options, num_cores,
            out_path):
        import os
        from genomicode import filelib
        from genomicode import parallel
        from Betsy import module_utils as mlib

        sam_filenames = mlib.find_sam_files(in_data.identifier)
        assert sam_filenames, "No .sam files."
        filelib.safe_mkdir(out_path)
        metadata = {}

        samtools = mlib.findbin("samtools")

        jobs = []  # list of (sam_filename, bam_filename)
        for sam_filename in sam_filenames:
            p, f = os.path.split(sam_filename)
            assert f.endswith(".sam")
            f = f.replace(".sam", ".bam")
            bam_filename = os.path.join(out_path, f)
            x = sam_filename, bam_filename
            jobs.append(x)

        # Make a list of samtools commands.
        sq = parallel.quote
        commands = []
        for x in jobs:
            sam_filename, bam_filename = x

            # samtools view -bS -o <bam_filename> <sam_filename>
            x = [
                sq(samtools),
                "view",
                "-bS",
                "-o",
                sq(bam_filename),
                sq(sam_filename),
            ]
            x = " ".join(x)
            commands.append(x)
        metadata["commands"] = commands
        metadata["num_cores"] = num_cores
        parallel.pshell(commands, max_procs=num_cores)

        # Make sure the analysis completed successfully.
        x = [x[-1] for x in jobs]
        filelib.assert_exists_nz_many(x)
        return metadata
Example #4
0
    def run(self, network, in_data, out_attributes, user_options, num_cores,
            out_path):
        import os
        from genomicode import filelib
        from genomicode import parallel
        from Betsy import module_utils as mlib

        filenames = mlib.find_fastq_files(in_data.identifier)
        assert filenames, "FASTQ files not found: %s" % in_data.identifier
        filelib.safe_mkdir(out_path)
        metadata = {}

        fastqc = mlib.findbin("fastqc")
        fastqc_q = parallel.quote(fastqc)

        commands = [
            "%s --outdir=%s --extract %s" % (fastqc_q, out_path, x)
            for x in filenames
        ]
        metadata["commands"] = commands
        metadata["num_cores"] = num_cores
        #commands = ["ls > %s" % x for x in filenames]
        parallel.pshell(commands, max_procs=num_cores)

        # Fastqc generates files:
        # <file>_fastqc/
        # <file>_fastqc.zip
        # The contents of the .zip file are identical to the directories.
        # If this happens, then delete the .zip files because they are
        # redundant.
        files = os.listdir(out_path)
        filenames = [os.path.join(out_path, x) for x in files]
        for filename in filenames:
            zip_filename = "%s.zip" % filename
            if os.path.exists(zip_filename):
                os.unlink(zip_filename)
    def run(
        self, network, in_data, out_attributes, user_options, num_cores,
        out_path):
        import os
        import shutil
        from genomicode import parallel
        from genomicode import filelib
        from genomicode import alignlib
        from Betsy import module_utils as mlib

        bam_filenames = mlib.find_bam_files(in_data.identifier)
        filelib.safe_mkdir(out_path)

        metadata = {}
        metadata["tool"] = "bam2fastx (unknown version)"

        # Somehow bam2fastx doesn't work if there are spaces in the
        # filename.  Make a temporary filename with no spaces, and
        # then rename it later.
        # Actually, may not be bam2fastx's fault.

        jobs = []
        for i, bam_filename in enumerate(bam_filenames):
            p, f, e = mlib.splitpath(bam_filename)
            #bai_filename = alignlib.find_bai_file(bam_filename)
            #assert bai_filename, "Missing index for: %s" % bam_filename
            #temp_bam_filename = "%d.bam" % i
            #temp_bai_filename = "%d.bam.bai" % i
            #temp_fa_filename = "%d.fa" % i
            fa_filename = os.path.join(out_path, "%s.fa" % f)
            x = filelib.GenericObject(
                bam_filename=bam_filename,
                #bai_filename=bai_filename,
                #temp_bam_filename=temp_bam_filename,
                #temp_bai_filename=temp_bai_filename,
                #temp_fa_filename=temp_fa_filename,
                fa_filename=fa_filename)
            jobs.append(x)
        bam2fastx = mlib.findbin("bam2fastx")

        # Link all the bam files.
        #for j in jobs:
        #    assert not os.path.exists(j.temp_bam_filename)
        #    #assert not os.path.exists(j.temp_bai_filename)
        #    os.symlink(j.bam_filename, j.temp_bam_filename)
        #    #os.symlink(j.bai_filename, j.temp_bai_filename)

        commands = []
        for j in jobs:
            # bam2fastx -A --fasta -o rqc14.fa rqc11.bam
            x = [
                mlib.sq(bam2fastx),
                "-A",
                "--fasta",
                #"-o", mlib.sq(j.temp_fa_filename),
                #mlib.sq(j.temp_bam_filename),
                "-o", mlib.sq(j.fa_filename),
                mlib.sq(j.bam_filename),
                ]
            x = " ".join(x)
            commands.append(x)
        metadata["commands"] = commands
        metadata["num_cores"] = num_cores
        parallel.pshell(commands, max_procs=num_cores)

        #for j in jobs:
        #    # Move the temporary files to the final location.
        #    shutil.move(j.temp_fa_filename, j.fa_filename)
        #    # Remove the link to the BAM file.
        #    os.unlink(j.temp_bam_filename)
        
        x = [j.fa_filename for x in jobs]
        filelib.assert_exists_nz_many(x)

        return metadata
Example #6
0
    def run(self, network, antecedents, out_attributes, user_options,
            num_cores, outfile):
        from genomicode import parselib
        from genomicode import parallel
        from Betsy import module_utils as mlib

        MAX_CORES = 4  # I/O intensive.

        fastq_node, sample_node, bam_node = antecedents
        bam_filenames = mlib.find_bam_files(bam_node.identifier)
        sample2fastq = mlib.find_merged_fastq_files(sample_node.identifier,
                                                    fastq_node.identifier,
                                                    as_dict=True)

        metadata = {}

        jobs = []  # list of (sample, bam_file, fastq_file)
        for filename in bam_filenames:
            path, sample, ext = mlib.splitpath(filename)
            assert sample in sample2fastq, "Missing fastq: %s" % sample
            fastq1, fastq2 = sample2fastq[sample]
            x = sample, filename, fastq1
            jobs.append(x)

        funcalls = []
        for x in jobs:
            sample, bam_filename, fastq_filename = x
            # Count the number of reads.
            x1 = count_reads, (fastq_filename, ), {}
            # Count the number of alignments.
            x2 = count_alignments, (bam_filename, ), {}
            funcalls.append(x1)
            funcalls.append(x2)
        assert len(funcalls) == len(jobs) * 2

        nc = min(num_cores, MAX_CORES)
        results = parallel.pyfun(funcalls, num_procs=nc)
        metadata["num_cores"] = nc

        # list of (sample, aligns, aligned_reads, total_reads, perc_aligned).
        results2 = []
        for i, x in enumerate(jobs):
            sample, bam_filename, fastq_filename = x
            x1 = results[i * 2]
            x2 = results[i * 2 + 1]
            total_reads = x1
            aligned_reads, alignments = x2
            perc_aligned = float(aligned_reads) / total_reads
            x = sample, alignments, aligned_reads, total_reads, perc_aligned
            results2.append(x)
        results = results2

        # sort by sample name
        results.sort()

        # Make table where the rows are the samples and the columns
        # are the statistics.
        table = []
        header = ("Sample", "Alignments", "Aligned Reads", "Total Reads",
                  "Perc Aligned")
        table.append(header)
        for x in results:
            sample, alignments, aligned_reads, total_reads, perc_aligned = x

            x1 = parselib.pretty_int(alignments)
            x2 = parselib.pretty_int(aligned_reads)
            x3 = parselib.pretty_int(total_reads)
            x4 = "%.2f%%" % (perc_aligned * 100)
            x = sample, x1, x2, x3, x4
            assert len(x) == len(header)
            table.append(x)

        # Write out the table as text file.
        TXT_FILE = "summary.txt"
        handle = open(TXT_FILE, 'w')
        for x in table:
            print >> handle, "\t".join(x)
        handle.close()

        txt2xls = mlib.findbin("txt2xls", quote=True)
        parallel.sshell("%s -b %s > %s" % (txt2xls, TXT_FILE, outfile))
        return metadata
    def run(self, network, antecedents, out_attributes, user_options,
            num_cores, out_path):
        import os
        from genomicode import filelib
        from genomicode import parallel
        from genomicode import alignlib
        from Betsy import module_utils as mlib

        bam_node, nc_node, ref_node = antecedents
        bam_filenames = mlib.find_bam_files(bam_node.identifier)
        assert bam_filenames, "No .bam files."
        nc_match = mlib.read_normal_cancer_file(nc_node.identifier)
        ref = alignlib.create_reference_genome(ref_node.identifier)
        filelib.safe_mkdir(out_path)
        metadata = {}
        metadata["tool"] = "MuSE %s" % alignlib.get_muse_version()

        wgs_or_wes = mlib.get_user_option(user_options,
                                          "wgs_or_wes",
                                          not_empty=True,
                                          allowed_values=["wgs", "wes"])
        dbsnp_file = mlib.get_user_option(user_options,
                                          "muse_dbsnp_vcf",
                                          not_empty=True,
                                          check_file=True)

        # Make sure dbsnp_file is compressed and indexed.
        assert dbsnp_file.endswith(".vcf.gz"), \
               "muse_dbsnp_vcf must be bgzip compressed."
        x = "%s.tbi" % dbsnp_file
        assert filelib.exists_nz(x), "muse_dbsnp_vcf must be tabix indexed."

        # sample -> bam filename
        sample2bamfile = mlib.root2filename(bam_filenames)
        # Make sure files exist for all the samples.
        mlib.assert_normal_cancer_samples(nc_match, sample2bamfile)

        # list of (normal_sample, cancer_sample, normal_bamfile, tumor_bamfile,
        #   muse_call_stem, muse_call_file, raw_vcf_outfile, vcf_outfile,
        #   logfile1, logfile2)
        opj = os.path.join
        jobs = []
        for (normal_sample, cancer_sample) in nc_match:
            normal_bamfile = sample2bamfile[normal_sample]
            cancer_bamfile = sample2bamfile[cancer_sample]
            path, sample, ext = mlib.splitpath(cancer_bamfile)
            muse_call_stem = opj(out_path, "%s.call" % cancer_sample)
            muse_call_file = "%s.MuSE.txt" % muse_call_stem
            raw_vcf_outfile = opj(out_path, "%s.vcf.raw" % cancer_sample)
            vcf_outfile = opj(out_path, "%s.vcf" % cancer_sample)
            log_outfile1 = opj(out_path, "%s.call.log" % cancer_sample)
            log_outfile2 = opj(out_path, "%s.sump.log" % cancer_sample)
            x = normal_sample, cancer_sample, normal_bamfile, cancer_bamfile, \
                muse_call_stem, muse_call_file, raw_vcf_outfile, vcf_outfile, \
                log_outfile1, log_outfile2
            jobs.append(x)

        # Generate the commands.
        # MuSE call -O test11 -f genomes/Broad.hg19/Homo_sapiens_assembly19.fa\
        #   bam04/196B-MG.bam bam04/PIM001_G.bam
        # MuSE sump -I test11.MuSE.txt -E -O test12.vcf \
        #   -D MuSE/dbsnp_132_b37.leftAligned.vcf.gz

        MuSE = mlib.findbin("muse")

        sq = mlib.sq
        commands = []
        for x in jobs:
            normal_sample, cancer_sample, normal_bamfile, cancer_bamfile, \
                muse_call_stem, muse_call_file, raw_vcf_outfile, vcf_outfile, \
                log_outfile1, log_outfile2 = x

            x = [
                sq(MuSE),
                "call",
                "-O",
                muse_call_stem,
                "-f",
                sq(ref.fasta_file_full),
                cancer_bamfile,
                normal_bamfile,
            ]
            x = " ".join(x)
            x = "%s >& %s" % (x, log_outfile1)
            commands.append(x)
        assert len(commands) == len(jobs)
        # Not sure about RAM.
        nc = mlib.calc_max_procs_from_ram(10, upper_max=num_cores)
        parallel.pshell(commands, max_procs=nc)
        metadata["num_cores"] = nc
        metadata["commands"] = commands

        # Make sure the log files have no errors.  The files should be
        # empty.
        log_files = [x[8] for x in jobs]
        filelib.assert_exists_z_many(log_files)

        # Make sure the call files are created and not empty.
        call_files = [x[5] for x in jobs]
        filelib.assert_exists_nz_many(call_files)

        # Run the "sump" step.
        commands = []
        for x in jobs:
            normal_sample, cancer_sample, normal_bamfile, cancer_bamfile, \
                muse_call_stem, muse_call_file, raw_vcf_outfile, vcf_outfile, \
                log_outfile1, log_outfile2 = x

            x = [
                sq(MuSE),
                "sump",
                "-I",
                sq(muse_call_file),
            ]
            assert wgs_or_wes in ["wgs", "wes"]
            if wgs_or_wes == "wgs":
                x += ["-G"]
            else:
                x += ["-E"]
            x += [
                "-O",
                sq(raw_vcf_outfile),
                "-D",
                sq(dbsnp_file),
            ]
            x = " ".join(x)
            x = "%s >& %s" % (x, log_outfile2)
            commands.append(x)
        assert len(commands) == len(jobs)
        # Not sure about RAM.
        nc = mlib.calc_max_procs_from_ram(10, upper_max=num_cores)
        parallel.pshell(commands, max_procs=nc)
        metadata["commands"] = metadata["commands"] + commands

        # Make sure the log files have no errors.  The files should be
        # empty.
        log_files = [x[9] for x in jobs]
        filelib.assert_exists_z_many(log_files)

        # Make sure the raw files are created and not empty.
        vcf_files = [x[6] for x in jobs]
        filelib.assert_exists_nz_many(vcf_files)

        # Fix the files.
        commands = []  # Should be python commands.
        for x in jobs:
            normal_sample, cancer_sample, normal_bamfile, cancer_bamfile, \
                muse_call_stem, muse_call_file, raw_vcf_outfile, vcf_outfile, \
                log_outfile1, log_outfile2 = x
            args = normal_sample, cancer_sample, raw_vcf_outfile, vcf_outfile
            x = alignlib.clean_muse_vcf, args, {}
            commands.append(x)
        parallel.pyfun(commands, num_procs=num_cores)

        # Delete the log_outfiles if empty.
        for x in jobs:
            normal_sample, cancer_sample, normal_bamfile, cancer_bamfile, \
                muse_call_stem, muse_call_file, raw_vcf_outfile, vcf_outfile, \
                log_outfile1, log_outfile2 = x
            if os.path.exists(log_outfile1):
                os.unlink(log_outfile1)
            if os.path.exists(log_outfile2):
                os.unlink(log_outfile2)

        # Make sure output VCF files exist.
        x = [x[7] for x in jobs]
        filelib.assert_exists_many(x)

        return metadata
    def run(self, network, antecedents, out_attributes, user_options,
            num_cores, out_path):
        import os
        from genomicode import parallel
        from genomicode import filelib
        from genomicode import alignlib
        from genomicode import hashlib
        from Betsy import module_utils as mlib

        fastq_node, sample_node, orient_node, reference_node = antecedents
        fastq_files = mlib.find_merged_fastq_files(sample_node.identifier,
                                                   fastq_node.identifier)
        ref = alignlib.create_reference_genome(reference_node.identifier)
        assert os.path.exists(ref.fasta_file_full)
        orient = mlib.read_orientation(orient_node.identifier)
        filelib.safe_mkdir(out_path)

        metadata = {}
        metadata["tool"] = "bowtie2 %s" % alignlib.get_bowtie2_version()

        # Bowtie2 doesn't handle files with spaces in them.  Make
        # temporary files without spaces.

        # Make a list of the jobs to run.
        jobs = []
        for i, x in enumerate(fastq_files):
            sample, pair1, pair2 = x
            bam_filename = os.path.join(out_path, "%s.bam" % sample)
            log_filename = os.path.join(out_path, "%s.log" % sample)
            sample_h = hashlib.hash_var(sample)
            temp_pair1 = "%d_%s_1.fa" % (i, sample_h)
            temp_pair2 = None
            if pair2:
                temp_pair2 = "%d_%s_2.fa" % (i, sample_h)
            j = filelib.GenericObject(sample=sample,
                                      pair1=pair1,
                                      pair2=pair2,
                                      temp_pair1=temp_pair1,
                                      temp_pair2=temp_pair2,
                                      bam_filename=bam_filename,
                                      log_filename=log_filename)
            jobs.append(j)

        for j in jobs:
            os.symlink(j.pair1, j.temp_pair1)
            if pair2:
                os.symlink(j.pair2, j.temp_pair2)

        # Generate bowtie2 commands for each of the files.
        attr2orient = {
            "single": None,
            "paired_fr": "fr",
            "paired_rf": "rf",
            "paired_ff": "ff",
        }
        orientation = attr2orient[orient.orientation]
        #x = sample_node.data.attributes["orientation"]
        #orientation = attr2orient[x]

        # Takes ~4 Gb per job.
        samtools = mlib.findbin("samtools")
        sq = parallel.quote
        commands = []
        for j in jobs:
            #sample, pair1, pair2, bam_filename, log_filename = x
            nc = max(1, num_cores / len(jobs))

            # bowtie2 -p 8 -x <genome> -1 <.fq> -2 <.fq> --fr
            #  2> test.log | samtools view -bS -o test.bam -
            x1 = alignlib.make_bowtie2_command(ref.fasta_file_full,
                                               j.temp_pair1,
                                               fastq_file2=j.temp_pair2,
                                               orientation=orientation,
                                               num_threads=nc)
            x2 = [
                sq(samtools),
                "view",
                "-bS",
                "-o",
                sq(j.bam_filename),
                "-",
            ]
            x2 = " ".join(x2)
            x = "%s 2> %s | %s" % (x1, sq(j.log_filename), x2)
            #x = "%s >& %s" % (x, sq(log_filename))
            commands.append(x)
        metadata["commands"] = commands
        parallel.pshell(commands, max_procs=num_cores)

        # Make sure the analysis completed successfully.
        x1 = [x.bam_filename for x in jobs]
        x2 = [x.log_filename for x in jobs]
        filelib.assert_exists_nz_many(x1 + x2)

        return metadata
Example #9
0
    def run(
        self, network, antecedents, out_attributes, user_options, num_cores,
        out_path):
        import os
        from genomicode import parallel
        from genomicode import filelib
        from genomicode import alignlib
        from Betsy import module_utils as mlib

        fastq_node, sai_node, orient_node, sample_node, reference_node = \
                    antecedents
        fastq_files = mlib.find_merged_fastq_files(
            sample_node.identifier, fastq_node.identifier)
        sai_path = sai_node.identifier
        assert filelib.dir_exists(sai_path)
        orient = mlib.read_orientation(orient_node.identifier)
        ref = alignlib.create_reference_genome(reference_node.identifier)
        filelib.safe_mkdir(out_path)
        metadata = {}
        metadata["tool"] = "bwa %s" % alignlib.get_bwa_version()

        # Technically, doesn't need the SampleGroupFile, since that's
        # already reflected in the sai data.  But better, because the
        # sai data might not always be generated by BETSY.

        # Find the merged fastq files.

        # Find the sai files.
        sai_filenames = filelib.list_files_in_path(
            sai_path, endswith=".sai", case_insensitive=True)
        assert sai_filenames, "No .sai files."

        bwa = mlib.findbin("bwa")
        # bwa samse -f <output.sam> <reference.fa> <input.sai> <input.fq>
        # bwa sampe -f <output.sam> <reference.fa> <input_1.sai> <input_2.sai>
        #   <input_1.fq> <input_2.fq> >

        # list of (pair1.fq, pair1.sai, pair2.fq, pair2.sai, output.sam)
        # all full paths
        jobs = []
        for x in fastq_files:
            sample, pair1_fq, pair2_fq = x

            # The sai file should be in the format:
            # <sai_path>/<sample>.sai    Single end read
            # <sai_path>/<sample>_1.sai  Paired end read
            # <sai_path>/<sample>_2.sai  Paired end read
            # Look for pair1_sai and pair2_sai.
            pair1_sai = pair2_sai = None
            for sai_filename in sai_filenames:
                p, s, e = mlib.splitpath(sai_filename)
                assert e == ".sai"
                if s == sample:
                    assert not pair1_sai
                    pair1_sai = sai_filename
                elif s == "%s_1" % (sample):
                    assert not pair1_sai
                    pair1_sai = sai_filename
                elif s == "%s_2" % (sample):
                    assert not pair2_sai
                    pair2_sai = sai_filename
            assert pair1_sai, "Missing .sai file: %s" % sample
            if pair2_fq:
                assert pair2_sai, "Missing .sai file 2: %s" % sample
            if pair2_sai:
                assert pair2_fq, "Missing .fq file 2: %s" % sample
                
            sam_filename = os.path.join(out_path, "%s.sam" % sample)
            log_filename = os.path.join(out_path, "%s.log" % sample)

            x = sample, pair1_fq, pair1_sai, pair2_fq, pair2_sai, \
                sam_filename, log_filename
            jobs.append(x)

        orientation = orient.orientation
        #orientation = sample_node.data.attributes["orientation"]
        assert orientation in ["single", "paired_fr", "paired_rf"]

        # Make a list of bwa commands.
        sq = mlib.sq
        commands = []
        for x in jobs:
            sample, pair1_fq, pair1_sai, pair2_fq, pair2_sai, \
                    sam_filename, log_filename = x
            if orientation == "single":
                assert not pair2_fq
                assert not pair2_sai

            samse = "samse"
            if orientation.startswith("paired"):
                samse = "sampe"

            x = [
                sq(bwa),
                samse,
                "-f", sq(sam_filename),
                sq(ref.fasta_file_full),
                ]
            if orientation == "single":
                x += [
                    sq(pair1_sai),
                    sq(pair1_fq),
                ]
            else:
                y = [
                    sq(pair1_sai),
                    sq(pair2_sai),
                    sq(pair1_fq),
                    sq(pair2_fq),
                    ]
                if orientation == "paired_rf":
                    y = [
                        sq(pair2_sai),
                        sq(pair1_sai),
                        sq(pair2_fq),
                        sq(pair1_fq),
                        ]
                x += y
            x += [
                ">&", sq(log_filename),
                ]
            x = " ".join(x)
            commands.append(x)
        metadata["commands"] = commands
        metadata["num_cores"] = num_cores
        parallel.pshell(commands, max_procs=num_cores)

        # Make sure the analysis completed successfully.
        x = [x[-2] for x in jobs]
        filelib.assert_exists_nz_many(x)
        
        return metadata
Example #10
0
    def run(self, network, antecedents, out_attributes, user_options,
            num_cores, out_path):
        import os
        from genomicode import parallel
        from genomicode import filelib
        from genomicode import genomelib
        from genomicode import config
        from Betsy import module_utils as mlib

        fasta_node, bam_node, sample_node, orient_node = antecedents
        fasta_data = mlib.find_merged_fastq_files(sample_node.identifier,
                                                  fasta_node.identifier,
                                                  find_fasta=True)
        bam_filenames = mlib.find_bam_files(bam_node.identifier)
        orient = mlib.read_orientation(orient_node.identifier)
        filelib.safe_mkdir(out_path)

        # TODO: Try to figure out version.
        metadata = {}
        metadata["tool"] = "RSeQC (unknown version)"

        pyrseqc = mlib.findbin("pyrseqc")

        gene_model = mlib.get_user_option(user_options,
                                          "gene_model",
                                          not_empty=True,
                                          allowed_values=["hg19"])
        if gene_model == "hg19":
            gene_path = config.rseqc_hg19
        else:
            raise AssertionError, "Unhandled: %s" % gene_model

        filelib.dir_exists(gene_path)
        gene_model_bed = os.path.join(gene_path, "RefSeq.bed12")
        housekeeping_model_bed = os.path.join(gene_path,
                                              "HouseKeepingGenes.bed")

        sample2fastadata = {}
        for x in fasta_data:
            sample, f1, f2 = x
            sample2fastadata[sample] = x

        is_paired = orient.orientation.startswith("paired")

        # Guess the read length.  Read the first fasta.
        assert sample2fastadata
        x = sample2fastadata.keys()[0]
        filename = sample2fastadata[x][1]
        lengths = {}  # length -> count
        for i, x in enumerate(genomelib.read_fasta_many(filename)):
            if i >= 100:
                break
            title, sequence = x
            l = len(sequence)
            lengths[l] = lengths.get(l, 0) + 1
        # Use the most common length.
        c_length = c_count = None
        for (l, c) in lengths.iteritems():
            if c_count is None or c > c_count:
                c_length, c_count = l, c
        assert c_length
        read_length = c_length

        jobs = []  # sample, bam_filename, fasta_file1, fasta_file2, outdir
        for bam_filename in bam_filenames:
            # <path>/<sample>.bam
            p, sample, e = mlib.splitpath(bam_filename)
            assert sample in sample2fastadata
            x, f1, f2 = sample2fastadata[sample]
            outdir = os.path.join(out_path, sample)
            x = sample, bam_filename, f1, f2, outdir
            jobs.append(x)

        # Some of the modules of RSeQC uses a lot of memory.  Have
        # seen a Python process take 33 Gb, and an R process take 200
        # Gb.  However, most of the modules use much less memory.  So
        # run one pyrseqc at a time, and run each one of those
        # processes in parallel.  Is probably slower than running
        # multiple pyrseqc, but takes less memory.
        commands = []
        for x in jobs:
            sample, bam_filename, fasta_filename1, fasta_filename2, outdir = x

            # pyrseqc.py -j 20 --paired_end rqc11.bam rqc14.fa 76 \
            #   mod07.txt hg19.HouseKeepingGenes.bed rqc21 --dry_run
            x = [
                mlib.sq(pyrseqc),
                "-j",
                str(num_cores),
            ]
            if is_paired:
                x += ["--paired_end"]
            x += [
                mlib.sq(bam_filename),
                mlib.sq(fasta_filename1),
                str(read_length),
                mlib.sq(gene_model_bed),
                mlib.sq(housekeeping_model_bed),
                mlib.sq(outdir),
            ]
            x = " ".join(x)
            commands.append(x)
        metadata["commands"] = commands
        metadata["num_cores"] = num_cores
        # pyrseqc takes up to ~40 Gb per process.
        # read_distribution.py takes 33 Gb.
        # read_quality.py spins off an R process that takes ~200 Gb.
        # Make sure we don't use up more memory than is available on
        # the machine.
        #nc = mlib.calc_max_procs_from_ram(60, upper_max=num_cores)
        #metadata["num cores"] = nc
        #x = parallel.pshell(commands, max_procs=nc)

        # Because of memory, just run one at a time, but each one, use
        # multiple cores.
        for cmd in commands:
            x = parallel.sshell(cmd)
            assert x.find("Traceback") < 0, x

        filelib.assert_exists_nz(out_path)

        return metadata
Example #11
0
def merge_vcf_files(vcf_filenames, out_filename, num_cores, tmp_path):
    # Put indexed files in tmp_path.
    import os
    import stat
    import shutil
    from genomicode import filelib
    from genomicode import hashlib
    from genomicode import parallel
    from Betsy import module_utils as mlib

    # TODO: find the version number of these tools.
    bgzip = mlib.findbin("bgzip")
    tabix = mlib.findbin("tabix")
    bcftools = mlib.findbin("bcftools")
    sq = parallel.quote

    tmp_path = os.path.realpath(tmp_path)
    filelib.safe_mkdir(tmp_path)

    # Keep track of all commands run.
    metadata = {}
    metadata["commands"] = []

    # Ignore VCF files that don't have any variants.
    vcf_filenames = [x for x in vcf_filenames if os.stat(x)[stat.ST_SIZE] > 0]

    # If there are no VCF files with any variants, then just create an
    # empty outfile and return.
    if not vcf_filenames:
        open(out_filename, 'w')
        return

    # 1.  Copy VCF files to temporary directory.             tmp_filename
    # 2.  Fix VCF files (e.g. NextGENe, JointSNVMix broken)
    # 3.  Sort the VCF files (needed for tabix)
    # 4.  Compress  (bgzip)
    # 5.  Index     (tabix)
    # 6.  Merge

    jobs = []
    for in_filename in vcf_filenames:
        path, root, ext = mlib.splitpath(in_filename)
        sample = root
        x = "%s%s" % (hashlib.hash_var(root), ext)
        tmp_filename = os.path.join(tmp_path, x)
        x = filelib.GenericObject(
            sample=sample,
            in_filename=in_filename,
            tmp_filename=tmp_filename,
        )
        jobs.append(x)

    # Make sure temporary files are unique.
    seen = {}
    for j in jobs:
        assert j.tmp_filename not in seen
        seen[j.tmp_filename] = 1

    # Merge them in order of sample.  The germline sample will be
    # duplicated, and we will know the order of the germline sample.
    schwartz = [(x.sample, x) for x in jobs]
    schwartz.sort()
    jobs = [x[-1] for x in schwartz]

    # Copy all the VCF files to a temporary directory.
    for j in jobs:
        shutil.copy2(j.in_filename, j.tmp_filename)

    #for j in jobs:
    #    make_file_smaller(j.tmp_filename, 1000)

    for j in jobs:
        # NextGENe creates broken VCF files.  Fix them.
        fix_nextgene_vcf(j.tmp_filename)
        # JointSNVMix creates broken VCF files.  Fix them.
        fix_jointsnvmix_vcf(j.tmp_filename)

    for j in jobs:
        sort_vcf_file(j.tmp_filename)

    ## # Since we are merging the files, we need to make sure that
    ## # each file has a unique name.  If the names aren't unique,
    ## # then make them unique by adding the name of the file.
    ## all_unique = True
    ## seen = {}
    ## for x in jobs:
    ##     sample, in_filename, tmp_filename = x
    ##     samples = _get_samples_from_vcf(tmp_filename)
    ##     for s in samples:
    ##         if s in seen:
    ##             all_unique = False
    ##             break
    ##         seen[s] = 1
    ##     if not all_unique:
    ##         break
    ## if not all_unique:
    ##     for x in jobs:
    ##         sample, in_filename, tmp_filename = x
    ##         _uniquify_samples_in_vcf(tmp_filename, sample)

    # Compress the VCF files.
    # bgzip file.vcf
    commands = []
    for j in jobs:
        x = "%s %s" % (sq(bgzip), sq(j.tmp_filename))
        commands.append(x)
    parallel.pshell(commands, max_procs=num_cores, path=tmp_path)
    metadata["commands"].extend(commands)
    metadata["num_cores"] = num_cores
    x = ["%s.gz" % x.tmp_filename for x in jobs]
    filelib.assert_exists_nz_many(x)

    # Index the VCF files.
    # tabix -p vcf file.vcf.gz
    commands = []
    for j in jobs:
        x = "%s -p vcf %s.gz" % (sq(tabix), sq(j.tmp_filename))
        commands.append(x)
    parallel.pshell(commands, max_procs=num_cores, path=tmp_path)
    metadata["commands"].extend(commands)
    x = ["%s.gz.tbi" % j.tmp_filename for j in jobs]
    filelib.assert_exists_nz_many(x)

    # Run bcftools
    ## For VCF files from somatic calls, the germline sample will
    ## be duplicated.  Add --force-samples to make sure this is
    ## still merged.

    # Since we need to append all the VCF files, it's easy to run
    # into error:
    # OSError: [Errno 7] Argument list too long
    #
    # To reduce the chance of this, figure out the path of the
    # tmp_filename, and run the analysis in that path so we can
    # use relative filenames.
    tmp_path = None
    for j in jobs:
        path, file_ = os.path.split(j.tmp_filename)
        if tmp_path is None:
            tmp_path = path
        assert path == tmp_path

    cmd = [
        sq(bcftools),
        "merge",
        "-o %s" % sq(out_filename),
        "-O v",
        "--force-samples",
    ]
    for j in jobs:
        path, file_ = os.path.split(j.tmp_filename)
        assert path == tmp_path
        cmd.append("%s.gz" % file_)
    x = " ".join(cmd)
    parallel.sshell(x, path=tmp_path)
    metadata["commands"].append(x)

    return metadata
Example #12
0
    def run(self, network, antecedents, out_attributes, user_options,
            num_cores, out_path):
        import os
        import shutil
        from genomicode import filelib
        from genomicode import parallel
        from genomicode import parselib
        from Betsy import module_utils as mlib

        mpileup_node, nc_node = antecedents
        mpileup_filenames = filelib.list_files_in_path(mpileup_node.identifier,
                                                       endswith=".pileup")
        assert mpileup_filenames, "No .pileup files."
        nc_match = mlib.read_normal_cancer_file(nc_node.identifier)
        #ref = alignlib.create_reference_genome(ref_node.identifier)
        filelib.safe_mkdir(out_path)

        # Figure out whether the purpose is to get coverage.  Change
        # the parameters if it is.
        assert "vartype" in out_attributes
        vartype = out_attributes["vartype"]
        assert vartype in ["snp", "indel"]

        sample2pufile = {}  # sample -> mpileup filename
        for filename in mpileup_filenames:
            path, sample, ext = mlib.splitpath(filename)
            sample2pufile[sample] = filename

        # Make sure files exist for all the samples.
        all_samples = []
        for (normal_sample, cancer_sample) in nc_match:
            if normal_sample not in all_samples:
                all_samples.append(normal_sample)
            if cancer_sample not in all_samples:
                all_samples.append(cancer_sample)
        missing = [x for x in all_samples if x not in sample2pufile]
        x = parselib.pretty_list(missing, max_items=5)
        assert not missing, "Missing BAM files for samples: %s" % x

        # list of (sample, normal_pileup, cancer_pileup,
        #          tmp1_normal, tmp1_cancer, log_filename, out_filename)
        opj = os.path.join
        jobs = []
        for (normal_sample, cancer_sample) in nc_match:
            normal_pileup = sample2pufile[normal_sample]
            cancer_pileup = sample2pufile[cancer_sample]
            p, sample, ext = mlib.splitpath(cancer_pileup)
            tmp1_normal = opj(out_path, "%s.normal.tmp1" % sample)
            tmp1_cancer = opj(out_path, "%s.cancer.tmp1" % sample)
            log_filename = opj(out_path, "%s.log" % sample)
            out_filename = opj(out_path, "%s.vcf" % sample)
            x = sample, normal_sample, cancer_sample, \
                normal_pileup, cancer_pileup, \
                tmp1_normal, tmp1_cancer, log_filename, out_filename
            jobs.append(x)

        # VarScan will generate a "Parsing Exception" if there are 0
        # reads in a location.  Will be either "0" or blank.  Filter
        # those lines out.
        sq = parallel.quote
        commands = []
        for x in jobs:
            sample, normal_sample, cancer_sample, \
                    normal_pileup, cancer_pileup, \
                    tmp1_normal, tmp1_cancer, log_filename, out_filename = x
            x1 = "awk -F'\t' '$4 >= 1 {print}' %s > %s" % (normal_pileup,
                                                           tmp1_normal)
            x2 = "awk -F'\t' '$4 >= 1 {print}' %s > %s" % (cancer_pileup,
                                                           tmp1_cancer)
            commands.extend([x1, x2])
        parallel.pshell(commands, max_procs=num_cores)
        x = [x[3] for x in jobs] + [x[4] for x in jobs]
        filelib.assert_exists_nz_many(x)

        # java -jar VarScan.jar somatic [normal_pileup] [tumor_pileup]
        #   [output] OPTIONS
        varscan = mlib.findbin("varscan_jar")

        # Use parameters from:
        # Using VarScan 2 for Germline Variant Calling and Somatic
        # Mutation Detection

        # Make a list of commands.
        commands = []
        for x in jobs:
            sample, normal_sample, cancer_sample, \
                    normal_pileup, cancer_pileup, \
                    tmp1_normal, tmp1_cancer, log_filename, out_filename = x
            x = [
                "java",
                "-jar",
                sq(varscan),
                "somatic",
                sq(tmp1_normal),
                sq(tmp1_cancer),
                sample,
                "--min-coverage",
                10,
                "--min-avg-qual",
                15,
                "--min-normal-coverage",
                10,
                "--min-tumor-coverage",
                10,
                "--min-var-freq",
                0.05,
                "--somatic-p-value",
                0.05,
                "--output-vcf",
                1,
            ]
            x = " ".join(map(str, x))
            x = "%s >& %s" % (x, log_filename)
            commands.append(x)

        parallel.pshell(commands, max_procs=num_cores)
        x = [x[5] for x in jobs]
        filelib.assert_exists_nz_many(x)

        # Files in out_path can get very big.  Clean them up.
        # <sample>.normal.tmp1    Very big (10's Gb).
        # <sample>.cancer.tmp1    Very big (10's to 100 Gb).
        for x in jobs:
            sample, normal_sample, cancer_sample, \
                    normal_pileup, cancer_pileup, \
                    tmp1_normal, tmp1_cancer, log_filename, out_filename = x
            if os.path.exists(tmp1_normal):
                os.unlink(tmp1_normal)
            if os.path.exists(tmp1_cancer):
                os.unlink(tmp1_cancer)

        # Copy the final file to the right place.
        for x in jobs:
            sample, normal_sample, cancer_sample, \
                    normal_pileup, cancer_pileup, \
                    tmp1_normal, tmp1_cancer, log_filename, out_filename = x
            # Will be written in current directory.
            varscan_out = "%s.snp.vcf" % sample
            if vartype == "indel":
                varscan_out = "%s.indel.vcf" % sample
            filelib.assert_exists(varscan_out)
            shutil.copy2(varscan_out, out_filename)

        # VarScan names the samples "NORMAL" and "TUMOR".  Replace
        # them with the actual names.
        for x in jobs:
            sample, normal_sample, cancer_sample, \
                    normal_pileup, cancer_pileup, \
                    tmp1_normal, tmp1_cancer, log_filename, out_filename = x
            _fix_normal_cancer_names(out_filename, normal_sample,
                                     cancer_sample)