def createTable(query): if not query: return "<h3> No query </h3>" MAX_COUNT = 100 pubmedquery = query.replace("-", "\-") Entrez.email = "*****@*****.**" h = Entrez.esearch(db="pubmed", term=pubmedquery, retmax=MAX_COUNT) result = Entrez.read(h) ids = result["IdList"] h = Entrez.efetch(db="pubmed", id=ids, rettype="medline", retmode="text") records = Medline.parse(h) tableContent = "" for record in records: try: tableContent += ( "<tr><td width='22%'>" + str(record.get("TI")) + "</td>" "<td width='5%'>" + str(record.get("DP")) + "</td>" "<td width='5%'>" + str(writers(record.get("FAU"))) + "</td>" "<td width='5%'>" + str(record.get("JT")) + "</td>" "<td width='5%'>" + str(query) + "</td>" "<td>" "<a href='http://www.ncbi.nlm.nih.gov/pubmed/" + str(record.get("PMID")) + "'><img src='PubMed.png' height='75px' width='75px' alt='PubMed' align='right'/></a>" + str(record.get("AB")) + "</td></tr>" ) except (TypeError): continue return tableContent
def getFormattedPubList(query): global args if args.v: print("INFO:PUBLIST : starting to extract details about publications") try: if args.v: print("INFO:PUBLIST : searching the query") results = search(query) if args.v: print("INFO:PUBLIST : extracting the all pmids") id_list = results['IdList'] if args.v: print("INFO:PUBLIST : Fetching details of top "+args.maxPub+" from "+str(len(id_list))+" results ranked by relevance") ids = ','.join(id_list) Entrez.email = args.mail handle = Entrez.efetch(db='pubmed', retmode='text', rettype="medline", retmax=args.maxPub, id=ids) print("INFO:PUBLIST : Parsing fetched details") papers = Medline.parse(handle) formattedList=list() notEmpty=True iterTest=1 print("INFO:PUBLIST : Initiating the iteration to format the details") while notEmpty==True: errorHTTP=True while errorHTTP==True: errorHTTP=False try: paper=next(papers) pos=str(iterTest) if args.v: print('###==> article number: '+pos+"\n") iterTest+=1 title=paper.get("TI", "?") pmid=paper.get("PMID", "?") authors=';'.join(paper.get("FAU", "?")) date=paper.get("DP", "?") journal=paper.get("JT", "?") cited=getCitations(pmid) if args.ab: abstract=paper.get("AB", "?") formattedList.append([pos,pmid,title,authors,journal,date,cited,abstract]) else: formattedList.append([pos,pmid,title,authors,journal,date,cited]) except httplib.IncompleteRead: errorHTTP=True print('ERROR:PUBLIST : httplib.incompletedRead'+"\n") except : notEmpty=False if args.v: print('INFO:PUBLIST : Final error because the list of papers is finished'+"\n") if args.v: print("INFO:PUBLIST : Ending the iteration to format the details") return formattedList except Exception as e: print("ERROR:PUBLIST : <== Unexpected ==> "+"\n"+str(e)) return None
def store_abstracts_for_query(query,query_tag,maxN=None,preview_only=False): # if query_tag=="": # simpleQuery=" ".join(map(lambda x:x.name,queryTerms)) # else: # simpleQuery=query_tag # query=pg.build_query(queryTerms) print "will search",query Entrez.email = "*****@*****.**" search_results = Entrez.read(Entrez.esearch(db="pubmed", term=query, reldate=10*365, datetype="pdat", usehistory="y")) count = int(search_results["Count"]) print "Found %i results" % count if maxN!=None and maxN<count: count=maxN print "Only keeping first",count,"abstracts" if preview_only: return sys.stdout.flush() batch_size = 50 for start in range(0,count,batch_size): end = min(count, start+batch_size) print "Going to download record %i to %i" % (start+1, end) sys.stdout.flush() fetch_handle = Entrez.efetch(db="pubmed", rettype="medline", retmode="text", retstart=start, retmax=batch_size, webenv=search_results["WebEnv"], query_key=search_results["QueryKey"]) records=Medline.parse(fetch_handle) for r in records: pubmed_to_pg.store_medline_entry(r,query_tag)
def top_papers(papers, outpath=None, delim="\t", top=20): """This function fetches all the relevant PubMed info for each PMID in 'papers' and 1) puts it into a list and 2) outputs it to a file named in outpath.""" # # Can be used with SP & GOA data papers_annots = [(len(papers[p]), p) for p in papers] papers_annots2 = [] papers_annots.sort() idlist = [p[1] for p in papers_annots[-top:]] Entrez.email = "*****@*****.**" h = Entrez.efetch(db="pubmed", id=",".join(idlist), rettype="medline", retmode="text") medrecs = list(Medline.parse(h)) titles = [medrec.get("TI", "?") for medrec in medrecs] years = [medrec.get("DP", "?") for medrec in medrecs] journals = [medrec.get("JT", "?") for medrec in medrecs] for p, title, year, journal in zip(papers_annots[-top:], titles, years, journals): papers_annots2.append( (p[0], p[1], title, year.split()[0].strip(), journal)) if outpath: fout = open(outpath, "w") print >> fout, "num proteins\tpubmed ID\tTitle\tYear\tJournal" for p in papers_annots2: print >> fout, "%d\t%s\t%s\t%s\t%s" % p fout.close() #papers_annots2 = [(# all annotations, PMID, Title, Year, Journal)] return papers_annots2
def __init__(self, pmids): Entrez.email = '*****@*****.**' ## pmids is a list (array of pmid) handle = Entrez.efetch(db='pubmed', id=pmids, rettype='medline', retmode='text') self.records = Medline.parse(handle)
def getMedlineList(pmids): """ This function takes a list of article-ids and returns a list of MedLine articles that contains an abstract. """ records = [] cleaned_records = [] listLength = len(pmids) Entrez.email = '*****@*****.**' for i in range(0, listLength, 650): tempList = pmids[i:i + 650] handle = Entrez.efetch(db='pubmed', id=tempList,rettype='medline', retmode='text') try: records.extend(list(Medline.parse(handle))) except: IOmodule.writeOutTxt(_mainFolder+'/'+'errordir_medline_records', pmids[i], '') print 'Downloaded',len(records),'MedLine articles.',str(listLength-len(records)),'remaining...' for article in records: if 'AB' in article: cleaned_records.append(article) print 'Returned',len(cleaned_records),'MedLine articles containing an abstract.' return cleaned_records
def get_pubmed_document(pubmed_ids, source='pubmed', include_pubtator=True): Entrez.email = settings.ENTREZ_EMAIL if type(pubmed_ids) == list: ids = [str(doc_id) for doc_id in pubmed_ids] else: ids = [str(pubmed_ids)] h = Entrez.efetch(db='pubmed', id=ids, rettype='medline', retmode='text') records = Medline.parse(h) # Reference to abbreviations: http://www.nlm.nih.gov/bsd/mms/medlineelements.html for record in records: if record.get('TI') and record.get('AB') and record.get('PMID') and record.get('CRDT'): #if Document.objects.pubmed_count(record.get('PMID')) is 0: title = ' '.join( pad_split(record.get('TI')) ) abstract = ' '.join( pad_split(record.get('AB')) ) doc, doc_c = Document.objects.get_or_create(document_id=record.get('PMID')) doc.title = title doc.source = source doc.save() sec, sec_c = Section.objects.get_or_create(kind='t', document=doc) sec.text = title sec.save() sec, sec_c = Section.objects.get_or_create(kind='a', document=doc) sec.text = abstract sec.save() if include_pubtator: doc.init_pubtator()
def get_wikiref(pmid): """ Returns the Wiki cite journal entry for a given Pubmed ID """ handle = Entrez.efetch(db="pubmed", id=pmid, rettype="medline", retmode="text") records = Medline.parse(handle) records = list(records) import datetime now = datetime.datetime.now() jetzt= now.strftime("%Y-%m-%d") # generate the {{cite journal}} format for rec in records: aut = rec["AU"] firstauthor = aut.pop(0) coauthors = ", ".join(aut) # get date of publication # CRDT datee = rec["CRDT"][0].split('/')[0] #if datee == '': # datee = rec["PD"] outstring = "{{cite journal|title=%s|journal=%s|year=%s|author=%s|coauthors=%s|volume=%s|pages=%s|id=PMID %s|accessdate=%s}}" % \ (rec["TI"], rec["JT"], datee, firstauthor, coauthors, rec["VI"], rec["PG"], pmid, jetzt) # example: #{{cite journal|title=|journal=|date=2008/07/31/|first=Cyril|last=Herry|coauthors=i|volume=454|issue=7204|pages=600-606|id=PMID 18615015 {{doi|10.1038/nature07166}}|url=http://www.fmi.ch/downloads/news/2008.07.11.01.luthi.nature.press.release.pdf|format=|accessdate=2009-09-12 }} return outstring
def pubm(query): handle = Entrez.esearch(db="pubmed", term="%s" % query, retmax=1000000000) Entrez.email = "*****@*****.**" # Always tell NCBI who you are record = Entrez.read(handle) idlist = record["IdList"] handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") records = Medline.parse(handle) records = list(records) file = open("result.txt", "w") for record in records: print("title:", record.get("TI", "?")) print("authors:", record.get("AU", "?")) print("source:", record.get("SO", "?")) print("") tit = "title:%s" % record.get("TI", "?") d = "ID:", record.get("PMID", "?") content = "%s\n%s\n\n" % (tit, d) file.write(content) file.close() root = Tk() S = Scrollbar(root) fileview = open("result.txt" , "r") T = Text(root, height=50, width=500) S.pack(side=RIGHT, fill=Y) T.pack(side=LEFT, fill=Y) S.config(command=T.yview) S.config(command=T.xview) T.config(yscrollcommand=S.set) T.config(xscrollcommand=S.set) quote = fileview.read() T.insert(END, quote, 'color') mainloop()
def fetch(self, batchSize=100): """Return a batch of results. """ if self._done: return [] end = min(self._searchCount, self._searchPosition + batchSize) log.info("Downloading from %i to %i..." % (self._searchPosition+1, end)) fetchHandle = Entrez.efetch(db="pubmed", rettype="medline", retmode="text", retstart=self._searchPosition, retmax=batchSize, webenv=self._searchSession, query_key=self._queryKey) result = Medline.parse(fetchHandle) papers = [paper.Paper(r) for r in result if r.get("PMID") is not None ] fetchHandle.close() log.info("... downloading done") self._searchPosition = self._searchPosition + batchSize if self._searchPosition >= self._searchCount: self._done = True log.info("Search ended.") return papers
def fetch(t, s): h = Entrez.esearch(db="pubmed", term=t, retmax=10000, sort=s) idList = Entrez.read(h)["IdList"] results = "Total publications for SA Beatson: **" + str(len(idList)) + "**\n\n" results += "Chronologically sorted:\n\n" if idList: handle = Entrez.efetch(db="pubmed", id=idList, rettype="medline", retmode="text") records = Medline.parse(handle) max = len(idList) + 1 for record in records: title = record["TI"] author = ", ".join(record["AU"]) source = record["SO"] pub_date = datetime.strptime(record["DA"], "%Y%m%d").date() pmid = record["PMID"] cur_pub = "| **%i.** %s\n| %s\n| %s\n| http://www.ncbi.nlm.nih.gov/pubmed/%s\n|\n" % ( max - 1, title, author, source, pmid, ) results = results + cur_pub max = max - 1 return results
def retrive_record(row): name=row[1]+"[AUTH]" handle = Entrez.esearch(db="pubmed",term=name) record=Entrez.read(handle) idlist=record["IdList"] handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") records = Medline.parse(handle) for record in records: temp=[] temp.append(row[0]) temp.append(row[1]) #title temp.append(record.get("TI","?")) #authors temp.append(record.get("AU","?")) # temp.append(record.get("AD","?")) # temp.append(record.get("DP","?")) #pubmed id for url temp.append(record.get("PMID","?")) return temp
def FetchIdList(ids): handle = Entrez.efetch(db="pubmed", id=ids, rettype="medline", retmode="text") record = Medline.parse(handle) return record
def createTable(query): if not query: return "<h3> No query </h3>" MAX_COUNT = 100 Entrez.email = '*****@*****.**' pubmedquery = query.replace('-','\-') h = Entrez.esearch(db='pubmed', term=pubmedquery, retmax=MAX_COUNT) result = Entrez.read(h) ids = result['IdList'] if not ids: return "<h3> geen gevonden resultaten </h3>" h = Entrez.efetch(db='pubmed', id=ids, rettype='medline', retmode='text') records = Medline.parse(h) tableContent = "" for record in records: try: tableContent += "<tr><td width='22%'>"+str(record.get("TI"))+"</td>"\ "<td width='5%'>"+str(record.get("DP"))+"</td>"\ "<td width='5%'>"+str(writers(record.get("FAU")))+"</td>"\ "<td width='5%'>"+str(record.get("JT"))+"</td>"\ "<td width='5%'>"+str(query)+"</td>"\ "<td>"\ "<a href='http://www.ncbi.nlm.nih.gov/pubmed/"+str(record.get("PMID"))+"'><img src='PubMed.png' height='75px' width='75px' alt='PubMed' align='right'/></a>"\ +str(record.get("AB"))+"</td></tr>" except (TypeError): continue; return tableContent
def index(): ix = open_dir("indexdir") writer = ix.writer() for pfile in pubmed_files: print "parsing",pfile txt=open(project+"/"+pfile,"r") records=Medline.parse(txt) for r in records: if "AB" not in r: continue authors="" if "FAU" in r: authors+=",".join(r["FAU"]) elif "AU" in r: authors+=",".join(r["AU"]) else: firstAuthor="Unknown" date=datetime.datetime.strptime(r["DA"],"%Y%m%d") title=r["TI"] pmid=r["PMID"].decode("utf-8") writer.add_document( title=title.decode("utf-8"), path=pfile.decode("utf-8"), abstract=r['AB'].decode("utf-8"), authors=authors.decode("utf-8"), pmid=pmid, dateAdded=date ) writer.commit() print "Index contain",ix.doc_count()
def getMeSH(url): query = urllib.unquote_plus(url) if not query: return "<h3> No query </h3>" MAX_COUNT = 10000 Entrez.email = '*****@*****.**' pubmedquery = query.replace('-','\-') h = Entrez.esearch(db='pubmed', term=pubmedquery, retmax=MAX_COUNT) result = Entrez.read(h) ids = result['IdList'] if not ids: return "<h3> geen gevonden resultaten </h3>" h = Entrez.efetch(db='pubmed', id=ids, rettype='medline', retmode='text') records = Medline.parse(h) MeSHCount = 0 MeSHContent = "" for record in records: try: if "tox" in str(record.get("MH")): MeSHContent += "<h4><a href='http://www.ncbi.nlm.nih.gov/pubmed/"+str(record.get("PMID"))+"'>" MeSHContent += "PMID: "+str(record.get("PMID"))+"</a> is analysed on toxicity. </h4> \n" except (TypeError): continue; return MeSHContent
def text_originating(query): """ Given a query, the function returns the text of the top 10 PubMed search results """ Entrez.email = "*****@*****.**" handle = Entrez.esearch(db="pubmed", retmax=10, term=query, usehistory='y', sort='relevance') record = Entrez.read(handle) query_key = record["QueryKey"] webenv = record["WebEnv"] handle = Entrez.efetch(db="pubmed", webenv=webenv, query_key=query_key, retmax=10, rettype="medline", retmode="text") records = Medline.parse(handle) records = list(records) search_results_text = " " for record in records: deltatext = record.get("TI", "?") + record.get("AB", "?") search_results_text = search_results_text + deltatext + "\n" handle.close() return search_results_text
def pubmed(): # Get the count of papers about orchid only in database pubmed Entrez.email = "*****@*****.**" # Always tell NCBI who you are handle = Entrez.egquery(term="orchid") record = Entrez.read(handle) for row in record["eGQueryResult"]: if row["DbName"] == "pubmed": print "The count of papers about orchid in database pubmed:", row["Count"] # Get the list of ids of above handle = Entrez.esearch(db="pubmed", term="orchid", retmax=100) record = Entrez.read(handle) idlist = record["IdList"] print "The id list of papers about orchid in database pubmed:", idlist print # Search papers author by "Liu ZJ" from pubmed handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") records = Medline.parse(handle) search_author = "Liu ZJ" for record in records: if "AU" not in record: continue if search_author in record["AU"]: print "Author %s found." % search_author print "title:", record.get("TI", "?") print "authors:", record.get("AU", "?") print "source:", record.get("SO", "?") print
def table(): query = request.form["query"] date1 = request.form["date1"] date2 = request.form["date2"] count = 0 term = query + " AND " + str(date1) + ":" + str(date2) + " [PDAT]" search_results = Entrez.read( Entrez.esearch(db="pubmed", term=term, datetype="pdat", usehistory="y", RetMax=100000)) ids = search_results['IdList'] h = Entrez.efetch(db='pubmed', id=ids, rettype='medline', retmode='text') records = Medline.parse(h) table = "" for record in records: ti = record.get('TI', '-') ot = record.get('OT', '-') au = record.get('AU', '-') dp = record.get('DP', '-') table += "<tr><td><div class=\"comment more\">{0}</div></td><td><div class=\"comment more\">{1}</div></td><td><div class=\"comment more\">{2}</div></td><td>{3}</td><td><a href=https://www.ncbi.nlm.nih.gov/pubmed/?term=" "{4}" ">{4}</a></td></tr>".format( ti, ', '.join(ot), ', '.join(au), dp, str(ids[count])) return render_template("articles.html", table=table)
def fetch(query_key, webenv, database, results_number): """ Fetches abstracted info from NIH databases for a number of articles with corresponding top search results' ids in (query_key, webenv) :param query_key: :param webenv: :param database: :param results_number: :return: abstracted info on each search result """ # downloading Medline records in the Medline flat-file format, handle = Entrez.efetch(db=database, webenv=webenv, query_key=query_key, retmax=results_number, rettype="medline", retmode="text") # handle = Entrez.efetch(db="pubmed", id=idlist, .....) # would result in separate search and fetch executions, # NIH (NCBI) advises to take advantage of their history support in this situation as follows: # userhistory='y' resulted in WebEnv and QueryKey arguments, that we use in fetch instead of using a list of ids records = Medline.parse(handle) records = list(records) # converting records to a list handle.close() return records
def _parse_medline(text: str) -> List[dict]: """Convert the rettype=medline to dict. See https://www.nlm.nih.gov/bsd/mms/medlineelements.html """ f = io.StringIO(text) medline_records = Medline.parse(f) return medline_records
def get_ids(): records_list = [] counter = 0 term = "disability" database = "Pubmed" date_ymdh = "01/01/2018" Entrez.email = '*****@*****.**' id_handle = Entrez.esearch(db=database, retmax=100, term=term) # search the terms on pubmed id_result = Entrez.read( id_handle) # gives the result direct from the pubmed page ids = id_result[ 'IdList'] # gives all of the id correlated to atricles about the terms print(ids) amount_hits = len(ids) # amount of artictles corralated to the term if amount_hits > 0: text_handle = Entrez.efetch(db=database, id=ids, rettype='medline', retmode='text') records = Medline.parse(text_handle) number_of_publications = len(ids) try: for record in records: result = [ record['TI'], record['AB'], database, record['DP'], record['AU'], record['LID'], ids[counter] ] records_list.append(result) except KeyError: pass records_list.append(result) # print(records_list[0][7]) sort_records(records_list)
def get_pubmed(doc_id='', query=''): """Return data from pubmed api""" try: parser = PubmedPaperParser() email = settings.CONSUMER_PUBMED_EMAIL Entrez.email = email if doc_id: handle = Entrez.esearch( db='pubmed', term='{doc_id}[AID] OR {doc_id}[PMID]'.format( doc_id=doc_id)) else: handle = Entrez.esearch(db='pubmed', term=query) record = Entrez.read(handle) handle.close() id_list = list(record["IdList"]) handle = Entrez.efetch(db="pubmed", id=id_list, rettype="medline", retmode="text") records = Medline.parse(handle) entries = [record for record in records] if entries and entries[0].get('PMID'): entry = entries[0] return parser.parse(entry) except IOError: raise return None
def getCancerData(searchTerm , filename, email) : f = open(filename, "w") Entrez.email = email # Always tell NCBI who you are handle = Entrez.egquery(term= searchTerm) record = Entrez.read(handle) for row in record["eGQueryResult"]: if row["DbName"]=="pubmed": print(row["Count"]) #prints number of articles retmax = row["Count"] retmax = 200 handle = Entrez.esearch(db="pubmed", term = searchTerm, retmax=retmax) record = Entrez.read(handle) idlist = record["IdList"] handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") records = Medline.parse(handle) records = list(records) #all pmids are in this list for record in records: s = ", " authors = s.join(record.get("AU", "?")) count = count + 1 f.write("PMID: " + record.get("PMID", "?")) f.write("Title: " + record.get("TI", "?")) f.write("Authors: " + authors) #writes the title, author, f.write("Source: " + record.get("SO", "?")) #source and abstract to a file f.write("Abstract: " + record.get("AB", "?")) handle.close() f.close()
def pub_med_parser(drug, side_effect): drug_eng = Drugs.drugs(drug) side_effect = Sideeffect.sideEffect(side_effect) Entrez.email = "*****@*****.**" terms = "(("+drug_eng[0]+"[Title]) AND "+side_effect+"[Title/Abstract])" handle= Entrez.esearch(db = "pubmed", term = terms, rettype = "medline", retmode = "text") record = Entrez.read(handle) handle.close() idlist = record["IdList"] handle2 = Entrez.efetch(db="pubmed", id=idlist, rettype="medline",retmode="text") records = Medline.parse(handle2) records = list(records) var = 0 titres = [] for record in records: titre = record.get("TI", "?") titres.append(titre) for i in titres: if drug_eng[0] in i and side_effect in i : var += 1 if var != 0: return True else: return False
def collect_example(): for date in ['2015', '2016', '2017', '2018']: f = open('./example_{}.csv'.format(date), 'w') writer = csv.writer(f) writer.writerow(['PMID', 'title', 'abstract', 'label']) search_handler = Entrez.esearch( db='pubmed', term= 'CLOCK Proteins/metabolism[MESH] OR Circadian Rhythm/*physiology[MESH] OR Circadian Clocks/physiology*[MESH]', mindate='{}/01/01'.format(date), maxdate='{}/12/31'.format(date), retmax=100000, usehistory='y') record = Entrez.read(search_handler) start = 0 fetch_handler = Entrez.efetch(db='pubmed', rettype='medline', retmode='text', retstart=start, retmax=10000, webenv=record['WebEnv'], query_key=record['QueryKey']) records = Medline.parse(fetch_handler) for record in records: pmid = record.get('PMID') title = record.get('TI') abstract = record.get('AB') if pmid is not None and title is not None and abstract is not None: writer.writerow([pmid, title, abstract, ''])
def fetch_pubmed_data(pmid): from Bio import Medline,Entrez try: ncbiemail= settings.author_email except: try: ncbiemail= settings.author_email except: raise Exception('Please set an email to use ncbi services') Entrez.email = ncbiemail Entrez.tool = 'mybiodb' try: entrez_response=Medline.parse( Entrez.efetch(db="pubmed", id=pmid, rettype="medline",retmode="text",)).next() if not entrez_response.has_key('PMID'): response.flash='pubmed ID error' else: return entrez_response except IOError: session.flash='Remote service not available, please try again.' return
def search_pubmed(term): "Searches a term on pubmed" print("Searching for", term) try: # Do a first query handle = Entrez.egquery(term=term) record = Entrez.read(handle) nb_entries = 0 for row in record["eGQueryResult"]: if row["DbName"]=="pubmed": nb_entries = row["Count"] print(row["Count"], 'results found.') if int(nb_entries) == 0: return BibDatabase() # Search the IDs handle = Entrez.esearch(db="pubmed", term=term, retmax=min(int(nb_entries), MAX_RESULTS)) record = Entrez.read(handle) idlist = record["IdList"] # Get the descriptions handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") records = Medline.parse(handle) records = list(records) return transform_pubmed(records) except Exception as e: print('The search failed.') print(e) return []
def get_information(ids): database = "pubmed" records_list = [] columns_list = [] text_handle = Entrez.efetch(db=database, id=ids, rettype='medline', retmode='text') records = Medline.parse(text_handle) print("Aantal publicaties: ", len(ids)) headers = ["Title", "Abstract", "Database", "Date", "Author"] columns_list.append(headers) try: for record in records: # print("Titel: ", record['TI']) # print("Abstract: ", record['AB']) # print("Database: ", database) # print("Datum: ",record['MHDA']) # print("Auteur: ", record['AU']) result = [ record['TI'], record['AB'], database, record['MHDA'], record['AU'] ] records_list.append(result) except KeyError: pass for header in headers: print(header)
def fetch_articles(id_list): """ This function retrieves the articles corresponding to the given id's and subsequently parses them using the MedLine (BioJava) parser. :param id_list: A list of id's. :return: A list of parsed articles corresponding to the given id's. """ articles = [] count = 0 if id_list: for ID in id_list: count += 1 try: handle = Entrez.efetch(db="pubmed", id=ID, rettype="medline", retmode="text") article = Medline.parse(handle) articles.append(list(article)[0]) if count == 500: # being nice to NCBI print("pause for 30 seconds") time.sleep(30) except: continue return articles else: return None
def retrieve(idlist): """ Recieves the list with PMID's and retrieves all the necessary data from those articles in a 2d list. :param: idlist (list): A list of all the PMID's of the articles with the search terms. :return: Artikels (2d list): A list with lists that contains all the necessary information for each article. """ handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") records = Medline.parse(handle) records = list(records) articles = [] counter = 1 for record in records: Article = ["Artikel: " + str(counter)] # Article index[0] Article.append(record.get("PMID", "?")) # PMID index[1] Article.append(record.get("TI", "Unknown")) # Title index[2] Article.append(record.get("AU", "Unknown")) # Author index[3] Article.append(record.get("AB", "Unknown")) # Abstract index[4] Article.append(int(determine__year(record.get( "EDAT", "0")))) # Publication year index[5] Article.append("https://www.ncbi.nlm.nih.gov/pubmed/" + record.get("PMID", "?")) # URL index [6] if Article[5] >= 2010: articles.append(Article) counter += 1 return articles
def _retrieve_record_batch(self, batch_start, batch_size): """Retrieves a PubMed article record batch. Retrieval is based on the info recovered by '_search_for_records()'. The batch size is limited by the 'batch_start' and 'batch_size' parameters. Returns a string containing the article info, if execution was successful and returns None otherwise. Args: batch_start (int): Specifies the starting index of this record batch. batch_size (int): Specifies the size of this records batch. Returns: list: A list of dictionaries that hold the data for each record. """ if None in [self.search_record_web_env, self.search_record_query_key]: raise ValueError( # Perform a search first! 'No WebEnv or QueryKey data in this PubMed class instance.') fetch_handle = Entrez.efetch(db='pubmed', rettype='medline', retmode='text', retstart=batch_start, retmax=batch_size, webenv=self.search_record_web_env, query_key=self.search_record_query_key) data = Medline.parse(fetch_handle) records = [record for record in data] fetch_handle.close() return records
def test_pubmed_16381885_and_19850725(self): """Bio.TogoWS.entry("pubmed", "16381885,19850725")""" handle = TogoWS.entry("pubmed", "16381885,19850725") records = list(Medline.parse(handle)) handle.close() self.assertEqual(len(records), 2) self.assertEqual(records[0]["TI"], "From genomics to chemical genomics: new developments in KEGG.") self.assertEqual( records[0]["AU"], [ "Kanehisa M", "Goto S", "Hattori M", "Aoki-Kinoshita KF", "Itoh M", "Kawashima S", "Katayama T", "Araki M", "Hirakawa M", ], ) self.assertEqual( records[1]["TI"], "DDBJ launches a new archive database with analytical tools " + "for next-generation sequence data.", ) self.assertEqual( records[1]["AU"], ["Kaminuma E", "Mashima J", "Kodama Y", "Gojobori T", "Ogasawara O", "Okubo K", "Takagi T", "Nakamura Y"], )
def gather_pubmed_journal_article_titles(journal, mindate, maxdate): # https://dataguide.nlm.nih.gov/eutilities/utilities.html handle = Entrez.esearch(db='pubmed', term='{}[Journal]'.format(journal), retmax=100000, retmode='text', mindate='{}'.format(mindate), maxdate='{}'.format(maxdate)) records = Entrez.read(handle) id_list = records['IdList'] #print(idlist) # this is a list handle = Entrez.efetch(db='pubmed', id=id_list, rettype='medline', retmode='text') records = Medline.parse(handle) file = open('{}_article_titles.txt'.format(journal), 'w') for record in records: title = re.sub(r'(?!\d)[.,()?;:](?!\d)', '', record.get('TI')) file.write(title + '\n') file.close()
def pubsearch(jids): Entrez.email = "*****@*****.**" # always let Entrez know who is calling pubterm = "" for i in jids: pubterm += i + "[JID] or " IDhandle = Entrez.esearch( db="pubmed", term="peptide AND (" + pubterm + " and ", mindate="2011", maxdate="2014", retmax=2500 ) # for documentation on esearch, see # http://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch # max number for retmax is 100k. Use retstart to get more than this. # Date range used to limit a search result by the date specified by datetype. These two parameters (mindate, maxdate) must be used together to specify an arbitrary date range. The general date format is YYYY/MM/DD, and these variants are also allowed: YYYY, YYYY/MM. record = Entrez.read(IDhandle) # record is returned as a dictionary. Lists search terms, all ID numbners etc idlist = record["IdList"] # return a list of ID numbers from the record dictionary recordHandle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") # search pubmed for records with idlist as input records = Medline.parse(recordHandle) # create dictionary from recordHandle return records
def top_papers_dict(papers, outpath=None,delim="\t", top=None): """This function fetches all the relevent PubMed info for each PMID in 'papers' (at the limit supplied in 'top') and 1) puts it into a dict.""" # # Can be used with SP & GOA data # papers_annots = [(len(papers_prots[p]), p) for p in papers_prots] papers_annots = [(len(papers[p]), p) for p in papers] papers_annots2_dict = {} papers_annots.sort() if top is None: negTop = 0 else: negTop = -top idlist = [p[1] for p in papers_annots[negTop:]] Entrez.email = MY_EMAIL h = Entrez.efetch(db="pubmed", id=",".join(idlist), rettype="medline", retmode="text") medrecs = list(Medline.parse(h)) titles = [medrec.get("TI","?") for medrec in medrecs] years = [medrec.get("DP","?") for medrec in medrecs] journals = [medrec.get("JT", "?") for medrec in medrecs] for p, title, year, journal in zip(papers_annots[negTop:], titles,years, journals): #papers_annots2_dict[PMID] = [# of total annotations, Title, Year, Journal] papers_annots2_dict[p[1]] = [len(papers[p[1]]), title, year.split()[0].strip(), journal] """if outpath: fout = open(outpath,"w") print >> fout, "num proteins\tpubmed ID\tTitle\tYear\tJournal" for p in papers_annots2: print >> fout, "%d\t%s\t%s\t%s\t%s" % p fout.close() """ return papers_annots2_dict
def main(Substance, Organism, Gene): zoekterm1 = "Cocaine" zoekterm2 = "Elegans" MAX_COUNT = 50 dic = {} titels = [] TERM = '' TERMS = [] count = 1 if zoekterm2 == "": TERM = zoekterm1 if zoekterm1 == "": print("vul een zoekterm in") sys.exit() elif zoekterm2 != "": TERM = zoekterm1+" and "+zoekterm2 TERMS.append(TERM) print(TERM) handle = Entrez.esearch(db="pubmed", term= TERM, retmax=MAX_COUNT) record = Entrez.read(handle) idlist = record["IdList"] handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") records = Medline.parse(handle) records = list(records) for record in records: titel = record.get("PMID","?") titels.append(titel) pubSet = set(titels) dic[TERM] = pubSet print(dic) return "Jay"
def get_pubmed_article(pubmed_id): # http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc126 response = {} Entrez.email = "*****@*****.**" handle = Entrez.efetch(db="pubmed", id=pubmed_id.strip(), rettype="medline", retmode="text") records = Medline.parse(handle) for record in records: response["pubmedid"] = pubmed_id response["title"] = record.get("TI", "") response["authors"] = record.get("AU", "") response["journal"] = record.get("TA", "") response["year"] = record.get("EDAT", "").split("/")[0] lidstring = record.get("LID", "") if "[doi]" in lidstring: response["doi"] = record.get("LID", "").split(" ")[0] else: response["doi"] = "" if not response["doi"]: aids = record.get("AID", "") for aid in aids: log.debug("AID:" + aid) if "[doi]" in aid: response["doi"] = aid.split(" ")[0] break else: response["doi"] = "" break return response
def download_abstracts(dataset, path='.', email=None, out_file=None): """ Download the abstracts for a dataset/list of pmids """ if email is None: raise Exception('No email address provided.') Entrez.email = email if isinstance(dataset, Dataset): pmids = dataset.image_table.ids.astype(str).tolist() elif isinstance(dataset, list): pmids = [str(pmid) for pmid in dataset] else: raise Exception('Dataset type not recognized: {0}'.format( type(dataset))) records = [] # PubMed only allows you to search ~1000 at a time. I chose 900 to be safe. chunks = [pmids[x:x + 900] for x in xrange(0, len(pmids), 900)] for chunk in chunks: h = Entrez.efetch(db='pubmed', id=chunk, rettype='medline', retmode='text') records += list(Medline.parse(h)) # Pull data for studies with abstracts data = [[study['PMID'], study['AB']] for study in records if study.get('AB', None)] df = pd.DataFrame(columns=['pmid', 'abstract'], data=data) if out_file is not None: df.to_csv(os.path.join(os.path.abspath(path), out_file), index=False) return df
def medline(zoek): handle = Entrez.efetch(db='pubmed', id=search(zoek), rettype='medline', retmode='text') records = Medline.parse(handle) records = list(records) d = [] for record in records: ID = record.get('PMID', '?') AB = record.get('AB', '?').upper() wordlist = AB.split() #split de Abstract string in lijst met woorden wordfreq = [] wordfreq = [wordlist.count(p) for p in Keywords] freqdict = dict(zip(Keywords, wordfreq)) data = [(freqdict[key], key) for key in freqdict] data.sort() data.reverse() data2 = [(t[1], t[0]) for t in data] #print(data2) result = {ID: data2} d.append(result) with open('Output.json', 'w') as f: json.dump(d, f)
def get_medline_records(pmids): handle = Entrez.efetch(db="pubmed", id=pmids, rettype="medline", retmode="text") records = Medline.parse(handle) return list(records)
def retrieve_pubmed_articles(abstracts_file_name, pmids_file_name, seed=4): pmids = random.Random(seed).sample(range(1, 33500000), 20000) pmids_retr = ', '.join(map(str, pmids)) used_pmids = [] abstract_count = 0 with open(abstracts_file_name, "w", encoding="utf-8") as outfile: for index, start in enumerate(range(0, len(pmids), 10000)): print("batch", index + 1) handle = Entrez.efetch(db='pubmed', id=pmids_retr, rettype='medline', retmode='text', retstart=start) records = Medline.parse(handle) for record in tqdm(records, total=10000, desc="Progress"): if "AB" in record and abstract_count < 10000: outfile.write(record["AB"] + "\n") abstract_count += 1 used_pmids.append(record["PMID"]) elif abstract_count >= 10000: break handle.close() print("collected abstracts:", abstract_count) with open(pmids_file_name, "w", encoding="utf-8") as outfile: outfile.write("\n".join(used_pmids)) return used_pmids
def searchids(eiwit, jaartal): Entrez.email = "*****@*****.**" date2 = str(int(str(datetime.datetime.today())[0:4]) + 1) readhandle = Entrez.read( Entrez.esearch(db="pubmed", retmax=100000, term=str(eiwit) + " AND {0}:{1} [PDAT]".format(jaartal, date2), datetype="pdat", usehistory="y")) ids = readhandle.get('IdList') closedArtikels = Entrez.efetch(db="pubmed", id=ids, rettype="medline", retmode="text") openArtikels = Medline.parse(closedArtikels) newRow = "" if len(ids) > 0: i = 0 count = -1 for artikel in openArtikels: i += 1 count += 1 abstract = artikel.get("AB", "-") author = artikel.get("AU", "-") dateOfPublish = artikel.get("DP", "-") publicationType = artikel.get("PT", "-") pmid = artikel.get("PMID", "-") keywords = artikel.get("KYWD", "-") title = artikel.get("TI", "-") newRow += "<tr><td><a href=" "https://www.ncbi.nlm.nih.gov/pubmed?term=" + str( ids[count]) + ">" + str( ids[count]) + "</td><td>" + title + "</td><td>" + ",".join( author ) + "</td><td>" + dateOfPublish + "</td><td>" + "\n".join( keywords) + "</td><td>" + "".join( abstract) + "</td></tr>" nodeID = str('m-' + str(i)) dataid = str('"id":' + '"' + nodeID + '"') datapub = str('"name":' + pmid) datawords = str('"Keywords":' + '"' + keywords + '"') dataloaded = str('"loaded":' + 'true') if len(ids) == 1: bestand.write('{' + dataid + ', ' + datawords + ', ' + datapub + ', ' + dataloaded + '},' + '\n') elif count + 1 < len(ids): bestand.write('{' + dataid + ', ' + datawords + ', ' + datapub + ', ' + dataloaded + '},' + '\n') elif count + 1 >= len(ids): bestand.write('{' + dataid + ', ' + datawords + ', ' + datapub + ', ' + dataloaded + '}' + '\n') bestand.write('],' + '\n') bestand.write('"links":[' + '\n') bestand.write('{"id":' + '"101", ' + '"from":' + '"m-0", ' + '"to":' + '"m-1", ' + '"type":' + '100},' + '\n') bestand.write('{"id":' + '"101", ' + '"from":' + '"m-1", ' + '"to":' + '"m-2", ' + '"type":' + '100}') bestand.write('\n' + ']' + '\n' + '}') return newRow
def top_papers(papers,outpath=None,delim="\t", top=20): """This function fetches all the relevant PubMed info for each PMID in 'papers' and 1) puts it into a list and 2) outputs it to a file named in outpath.""" # # Can be used with SP & GOA data papers_annots = [(len(papers[p]), p) for p in papers] papers_annots2 = [] papers_annots.sort() idlist = [p[1] for p in papers_annots[-top:]] Entrez.email = "*****@*****.**" h = Entrez.efetch(db="pubmed", id=",".join(idlist), rettype="medline", retmode="text") medrecs = list(Medline.parse(h)) titles = [medrec.get("TI","?") for medrec in medrecs] years = [medrec.get("DP","?") for medrec in medrecs] journals = [medrec.get("JT", "?") for medrec in medrecs] for p, title, year, journal in zip(papers_annots[-top:], titles,years, journals): papers_annots2.append((p[0],p[1], title, year.split()[0].strip(), journal)) if outpath: fout = open(outpath,"w") print >> fout, "num proteins\tpubmed ID\tTitle\tYear\tJournal" for p in papers_annots2: print >> fout, "%d\t%s\t%s\t%s\t%s" % p fout.close() #papers_annots2 = [(# all annotations, PMID, Title, Year, Journal)] return papers_annots2
def get_citations(rec_paper_list, logger): """Takes a list of paper ID numbers and return a PubMed reference for each paper on the list. Arguments: rec_paper_list - list of strs; paper IDs numbers Returns: None (prints the references to the screen) """ id_list = ",".join(rec_paper_list) search_results = Entrez.read(Entrez.epost("pubmed", id=id_list)) query_key = search_results["QueryKey"] webenv = search_results["WebEnv"] handle = Entrez.efetch(db="pubmed", id=id_list, rettype='medline', retmode='text', webenv=webenv, query_key=query_key) records = Medline.parse(handle) for index, record in enumerate(records, 1): logger.info("{}. {} {}. {}. {}. ({})".format(index, record.get("TI", "?"), record.get("AU", "?"), record.get("JT", "?"), record.get("DP", "?"), record.get("PMID", "?")))
def pubsearch(jids): Entrez.email = "*****@*****.**" #always let Entrez know who is calling pubterm = "" for i in jids: pubterm += i+"[JID] or " IDhandle = Entrez.esearch(db="pubmed", term="peptide AND ("+pubterm+" and ", mindate="2011", maxdate="2014", retmax=5) #for documentation on esearch, see #http://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch #max number for retmax is 100k. Use retstart to get more than this. #Date range used to limit a search result by the date specified by datetype. These two parameters (mindate, maxdate) must be used together to specify an arbitrary date range. The general date format is YYYY/MM/DD, and these variants are also allowed: YYYY, YYYY/MM. record = Entrez.read(IDhandle) # record is returned as a dictionary. Lists search terms, all ID numbners etc idlist = record["IdList"] #return a list of ID numbers from the record dictionary recordHandle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") #search pubmed for records with idlist as input records = Medline.parse(recordHandle) #create dictionary from recordHandle return records
def fetch_details(id_list, email, api_key=None): '''Retrieve the PMID details for the list of PMIDs''' num_ids = len(id_list) # a single call only returns up to 10,000 Entrez.email = email if api_key: Entrez.api_key = api_key # see https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch for information on parameters # see https://www.nlm.nih.gov/bsd/mms/medlineelements.html for the medline elements # efetch can only return a max of 10000 results per request, so we'll work in chunks results = [] start = 0 end = 0 print(f" Retrieving details for {num_ids} PMIDs ...") # we'll use a the chunks generator to get batches of 10,000 PMIDs for batch in chunks(id_list, 10000): start = end end = start + len(batch) print(f" Retrieving details for PMIDs {start} to {end} ...") pmids = ','.join(batch) handle = Entrez.efetch(db="pubmed", id=pmids, rettype="medline", retmode="text") results.extend(list(Medline.parse(handle))) print(" Done.") return results
def getCancerData(searchTerm, filename, email): Entrez.email = email # Always tell NCBI who you are handle = Entrez.egquery(term=searchTerm) record = Entrez.read(handle) idlistAll = 0 for row in record["eGQueryResult"]: if row["DbName"] == "pubmed": print(row["Count"]) #prints number of articles retmax = int(row["Count"]) handle = Entrez.esearch(db="pubmed", term=searchTerm, retmax=retmax) record = Entrez.read(handle) idlistAll = record["IdList"] ### loop through each batch. There is a limit to efetch start = 0 while start < len(idlistAll): filename2 = filename + str(start) + ".txt" #Creates file names f = open(filename2, "w") #Opens them batchSize = 2000 end = start + batchSize if end > len(idlistAll) + 1: end = len(idlistAll) + 1 #Creates the batches idlist = idlistAll[start:end] handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") # records = Medline.parse(handle) # Extracts the info from pubmed records = list(records) #all pmids are in this list for record in records: #print record # print "Article #", count # print "PMID: ", record.get("PMID", "?") # print "title:", record.get("TI", "?") # print "authors:", record.get("AU", "?") # print "source:", record.get("SO", "?") # count = count + 1 s = ", " authors = s.join(record.get("AU", "?")) f.write("PMID: " + record.get("PMID", "?") + "\t") f.write("Title: " + record.get("TI", "?") + "\t") f.write("Authors: " + authors + "\t") #writes the title, author, f.write("Source: " + record.get("SO", "?") + "\t") #source and abstract to a file f.write("Abstract: " + record.get("AB", "?") + "\n") print("Batch starting at " + str(start) + " is complete") start = start + batchSize #moves to next batch handle.close() f.close
def search_ncbi(query, autocorrect=False, db='pubmed', reldate=365, max_results=500): ''' Searches the ncbi databank for the specific query. Note that autocorrect=True uses another request to the Entrez webserver. The parameters which can be used for the Entrez methods can be found on https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch The meaning of the keys in the results can be found on https://www.nlm.nih.gov/bsd/mms/medlineelements.html :param Str db: Database to be searched https://www.ncbi.nlm.nih.gov/books/NBK25497/table/chapter2.T._entrez_unique_identifiers_ui/?report=objectonly :param Int reldate: The search returns only those items that are no older than reldate days. :return: List of search results, containing (among other informations) the title and abstract of the respective papers. :rtype List[Dict]: ''' if autocorrect: query = _preprocess_query(query, db) handler = Entrez.esearch(db=db, term=query, reldate=reldate, datetype="pdat", sort='Best match', usehistory="y") search_results = Entrez.read(handler) results_as_text = [] # Download in batches, since url may break if max_results is large. batch_size = 25 count = min(max_results, int(search_results["Count"])) steps = list(range(0, count, batch_size)) batch_sizes = [batch_size for _ in steps] # Last batch_size is chosen such that the total number of retrieved documents is equal to max_results if len(steps) > 0: # catch empty search results batch_sizes[-1] = count - steps[-1] for start, batch_size in zip(steps, batch_sizes): try: fetch_handle = Entrez.efetch(db=db, rettype="medline", retmode="text", retstart=start, retmax=batch_size, webenv=search_results["WebEnv"], query_key=search_results["QueryKey"]) results_as_text += fetch_handle.read().split('\n') except HTTPError as err: pass results = [dict(result) for result in Medline.parse(results_as_text)] results = _postprocess_results(results) return results
def get_pubmed_data(idlist): """Takes a list of pubmed ids and returns title, auth, yr""" handle = Entrez.efetch(db='pubmed', id=idlist, rettype='medline', retmode='text') records = Medline.parse(handle) mypms = [] for record in records: mypms.append((record["TI"], record["AU"], record["PMID"])) return mypms
def pubmedsearch (TERM, MAX_COUNT = 10000): # Returns an Entrez object matching *TERM* Entrez.email = '*****@*****.**' h = Entrez.esearch(db='pubmed', retmax=MAX_COUNT, term=TERM) result = Entrez.read(h) ids = result['IdList'] h = Entrez.efetch(db='pubmed', id=ids, rettype='medline', retmode='text') records = Medline.parse(h) return records
def Pubmedsearch(PMID): pmid = "" pmid = PMID handle = Entrez.efetch(db="pubmed", id= pmid, rettype="medline",retmode="text") records = Medline.parse(handle) records = list(records) for record in records: return (str(pmid)+"\t"+str(record.get("TI", "?"))+"\t"+str(record.get("FAU", "?"))+"\t"+str(record.get("AU", "?"))+"\t"+str(record.get("AD", "?")))
def get_record_from_pmid(pmid): # now get the actual citation; should really only be a singleton, # but this library likes to operate over lists citations = Entrez.efetch(db="pubmed",id=pmid, rettype="medline",retmode="text") # again, Bio likes to operate on lists, even though we only have # a singleton here record = list(Medline.parse(citations))[0] return record
def get_articles(term): idlist = get_article_ids(term) counter=0 #pbar = make_pbar(len(idlist),text="Fetching") articles=[] if len(idlist) > 100: chunks=[idlist[i:i+100] for i in range(0, len(idlist), 100)] for chunk in chunks: handle = Entrez.efetch(db="pubmed", id=chunk, rettype="medline", retmode="text") articles.extend(list(Medline.parse(handle))) print '#' #pbar.update(p.currval+len(chunk)) else: handle=Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") articles.extend(list(Medline.parse(handle))) #pbar.finish() return articles
def store_abstract_with_pmid(pmid,queryTag=None): """Populate the PG databases with the MEDLINE entries having these pmid. Pmid can is a scalar or a list of pmid """ if queryTag==None: queryTag="PMID" Entrez.email="*****@*****.**" handle=Entrez.efetch(db="pubmed",rettype="medline",retmode="text",id=pmid) for r in Medline.parse(handle): store_medline_entry(r,queryTag)
def pubmedsearch (TERM, MAX_COUNT = 10000): # Returns an Entrez object matching *TERM* Entrez.email = '*****@*****.**' Entrez.tool = 'pm_impacts' h = Entrez.esearch(db='pubmed', retmax=MAX_COUNT, term=TERM) result = Entrez.read(h) ids = result['IdList'] h = Entrez.efetch(db='pubmed', id=ids, rettype='medline', retmode='text') records = Medline.parse(h) return records
def fetch_abstract(self,Titulo): Entrez.email = "*****@*****.**" handle = Entrez.esearch(db = "pubmed", term = Titulo, retmax = 1) result= Entrez.read(handle) handle.close idlist=result["IdList"] handle2 = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") result2 = Medline.parse(handle2) for record in result2: print(record["AB"]) handle2.close()
def extractRecords(self): """ Extracts a user defined number of records from pubMed based on a query string, ideally PDZ domain. """ handle = Entrez.esearch("pubmed", sys.argv[1], retmax=int(sys.argv[2])) record = Entrez.read(handle) idlist = record["IdList"] handle = Entrez.efetch(db="pubmed", id=idlist, rettype="medline", retmode="text") records = Medline.parse(handle) self.Records = list(records)
def medline_download_entries(pmids): Entrez.email="*****@*****.**" request = Entrez.epost("pubmed",id=",".join(map(str,pmids))) result = Entrez.read(request) webEnv = result["WebEnv"] queryKey = result["QueryKey"] handle = Entrez.efetch(db="pubmed",rettype="medline",retmode="text", webenv=webEnv, query_key=queryKey) all_entries=[] for r in Medline.parse(handle): all_entries.append(r) return all_entries