Example #1
0
def complete_binary_tree(n: int = None,
                         h: int = None,
                         directed=False) -> Graph:
    """
    Construct a perfect binary tree with n nodes/height of h.
    :param n: number of nodes
    :param h: height
    :param directed: directed edges
    :return:
    """
    if n is None and h is None:
        raise ValueError('One of n and h must be not-null.')
    if n is None and h is not None:
        n = 2**(h + 1) - 1
    if n == 0:
        return Graph([], [])
    # check n+1 is a power of two - 1
    if not (n & (n + 1)) == 0:
        raise ValueError(
            'Number of nodes not enough for a complete binary tree.')
    vertices: List[Vertex] = [Vertex(label=f'{i}', index=i) for i in range(n)]

    edges = [Edge(vertices[i], vertices[2 * i + 1]) for i in range(n // 2)]
    edges += [
        Edge(vertices[i], vertices[2 * i + 2]) for i in range(n // 2 - 1)
    ]
    if directed:
        return Graph(vertices, edges, directed=True)
    edges += [Edge(vertices[2 * i + 1], vertices[i]) for i in range(n // 2)]
    edges += [
        Edge(vertices[2 * i + 2], vertices[i]) for i in range(n // 2 - 1)
    ]
    return Graph(vertices, edges)
Example #2
0
    def test_vertex_adding(self):
        n = 100
        g = Graph([], [])
        vertices = [Vertex(label=f'{i}', index=i) for i in range(n)]
        g.add_vertices(vertices)

        self.assertEqual(True, True)
Example #3
0
def path_graph(n: int, directed=False) -> Graph:
    vertices: List[Vertex] = [Vertex(label=f'{i}', index=i) for i in range(n)]
    edges = [Edge(vertices[i], vertices[i + 1]) for i in range(n - 1)]
    if not directed:
        edges += [Edge(vertices[i], vertices[i - 1]) for i in range(1, n)]

    return Graph(vertices, edges, directed=directed)
Example #4
0
def complete_graph(n: int, directed=False) -> Graph:
    vertices: List[Vertex] = [Vertex(label=f'{i}', index=i) for i in range(n)]
    if directed:
        edges = [Edge(v, i) for v, i in itertools.combinations(vertices, 2)]
    else:
        edges = [Edge(v, i) for v, i in itertools.permutations(vertices, 2)]
    return Graph(vertices, edges, directed=directed)
Example #5
0
def graph_cartesian(g1: Graph, g2: Graph):
    # node labels are (v1,v2)
    vertices = [
        Vertex(label=f'{v}', index=i)
        for i, v in enumerate(zip(g1.vertices, g2.vertices))
    ]
    edges = []
    return Graph(vertices=vertices, edges=edges)
Example #6
0
def empty_graph(n: int = 0) -> Graph:
    """
    Empty graph with or without vertices.
    :param n: (optional) number of vertices
    :return:
    """
    vertices: List[Vertex] = [Vertex(label=f'{i}', index=i) for i in range(n)]

    return Graph(vertices, [])
Example #7
0
def euler_graph(n: int, cycle=True) -> Graph:
    # TODO
    """
    Create a random graph with an Euler path.
    :param n: number of vertices
    :param cycle: if True, there is also an Euler cycle in the graph.
    :return:
    """
    vertices: List[Vertex] = [Vertex(label=f'{i}', index=i) for i in range(n)]
    v2 = random.choices(vertices, k=n)
    edges = [Edge(v, i) for v, i in zip(vertices, v2)]