def main(): args = parse_args() cell_lines = CCLE_Info.read_cell_lines(args.cell_lines) rnaseq_raw = pd.read_csv(args.input, sep='\t', header=0, skiprows=range(0, 2)) truncated = restrict_to_cell_lines(rnaseq_raw, cell_lines) truncated.to_csv(args.output, sep='\t')
def main(): args = parse_args() df = pd.read_csv(args.input, header=0, sep='\t') ccle = CCLE_Info(args.ccle_metadata) cell_lines = CCLE_Info.read_cell_lines(args.cell_lines) nonsense_df = extract_mutations_of_type(['Nonsense_Mutation'], df, ccle, cell_lines) missense_df = extract_mutations_of_type(['Missense_Mutation'], df, ccle, cell_lines) nm_df = extract_mutations_of_type(['Missense_Mutation', 'Nonsense_Mutation'], df, ccle, cell_lines) # Save the dataframe missense_df.to_csv(args.missense_output, sep='\t', header=True, index=True) nonsense_df.to_csv(args.nonsense_output, sep='\t', header=True, index=True) nm_df.to_csv(args.combined_output, sep='\t', header=True, index=True)
def main(): args = parse_args() df = pd.read_csv(args.input, header=0) cell_lines = CCLE_Info.read_cell_lines(args.cell_lines) df = df[['Cell_Line', 'Tissue', 'Perturbagen', 'GRinf', 'GR_AOC']] df = df.rename(columns={'Perturbagen': 'Drug'}) # restrict to cell line df = df[df.Cell_Line.isin(cell_lines)] print('* Number of drugs:', len(args.drugs)) print('\tDrugs:', args.drugs) for drug, output in zip(args.drugs, args.outputs): dr_df = get_drug_response_df(df, drug, cell_lines) dr_df.to_csv(output, sep='\t', header=True, index=True)