def distribution(tree, name, nbins=10, min=-0.7, max=1): h = TH1F(name, ';VBF mva', nbins, min, max) h.Sumw2() tree.Project(name, 'VBF_mva', '(VBF_mva>-0.7)*weight') h.Scale(1/h.Integral()) if name is 'WJets': sBlue.formatHisto(h) elif name is 'zdata': sRed.formatHisto(h) return h
if __name__ == '__main__': from ROOT import TH1F, TCanvas, gPad from CMGTools.RootTools.Style import sBlue, sGreen, sRed, sData, formatPad plot = DataMCPlot('plot') mult = 10000 h1 = TH1F('h1', 'h1', 100, -5, 5) h1.FillRandom('gaus', 1 * mult) h2 = TH1F('h2', 'h2', 100, -5, 5) h2.FillRandom('pol0', 1 * mult) h3 = TH1F('h3', 'h3', 100, -5, 5) h3.FillRandom('pol0', 1 * mult) sBlue.formatHisto(h1) sGreen.formatHisto(h2) sRed.formatHisto(h3) plot.AddHistogram('signal', h1) plot.AddHistogram('bgd1', h2) plot.AddHistogram('bgd2', h3) plot.Hist('signal').layer = 4 plot.Hist('bgd1').layer = 1 plot.Hist('bgd2').layer = 2 h4 = TH1F('h4', 'h4', 100, -5, 5) h4.Sumw2() sData.formatHisto(h4)
if __name__ == '__main__': from ROOT import TH1F, TCanvas, gPad from CMGTools.RootTools.Style import sBlue, sGreen, sRed, sData, formatPad plot = DataMCPlot('plot') mult = 10000 h1 = TH1F('h1','h1', 100,-5,5) h1.FillRandom('gaus', 1*mult ) h2 = TH1F('h2','h2', 100,-5,5) h2.FillRandom('pol0', 1*mult ) h3 = TH1F('h3','h3', 100,-5,5) h3.FillRandom('pol0', 1*mult ) sBlue.formatHisto(h1) sGreen.formatHisto(h2) sRed.formatHisto(h3) plot.AddHistogram('signal', h1) plot.AddHistogram('bgd1', h2) plot.AddHistogram('bgd2', h3) plot.Hist('signal').layer = 4 plot.Hist('bgd1').layer = 1 plot.Hist('bgd2').layer = 2 h4 = TH1F('h4','h4', 100,-5,5) h4.Sumw2() sData.formatHisto(h4)