Example #1
0
def send2monit(data):
    """
    Helper function which wraps StompAMQ and incoming dataframe into
    notification message. Then it sends it to AMQ end-point provided
    by credentials file.
    """
    if not StompAMQ:
        return
    # main function logic
    with open(SparkFiles.get('amq_broker.json')) as istream:
        creds = json.load(istream)
        host, port = creds['host_and_ports'].split(':')
        port = int(port)
        amq = StompAMQ(creds['username'], creds['password'], \
            creds['producer'], creds['topic'], \
            validation_schema=None, \
            host_and_ports=[(host, port)])
        arr = []
        for idx, row in enumerate(data):
#            if  not idx:
#                print("### row", row, type(row))
            doc = json.loads(row)
            hid = doc.get("hash", 1)
            arr.append(amq.make_notification(doc, hid))
        amq.send(arr)
        print("### Send %s docs to CERN MONIT" % len(arr))
Example #2
0
    def uploadToAMQ(self, docs, agentUrl, timeS):
        """
        _uploadToAMQ_

        Sends data to AMQ, which ends up in the MonIT infrastructure.
        :param docs: list of documents/dicts to be posted
        """
        if not docs:
            logging.info("There are no documents to send to AMQ")
            return
        # add mandatory information for every single document
        for doc in docs:
            doc['agent_url'] = agentUrl

        docType = "cms_%s_info" % self.producer
        notifications = []

        logging.debug("Sending the following data to AMQ %s", pformat(docs))
        try:
            stompSvc = StompAMQ(username=self.userAMQ,
                                password=self.passAMQ,
                                producer=self.producer,
                                topic=self.topicAMQ,
                                validation_schema=None,
                                host_and_ports=self.hostPortAMQ,
                                logger=logging)

            for doc in docs:
                singleNotif, _, _ = stompSvc.make_notification(
                    payload=doc,
                    docType=docType,
                    ts=timeS,
                    dataSubfield="payload")
                notifications.append(singleNotif)

            failures = stompSvc.send(notifications)
            msg = "%i out of %i documents successfully sent to AMQ" % (
                len(notifications) - len(failures), len(notifications))
            logging.info(msg)
        except Exception as ex:
            logging.exception("Failed to send data to StompAMQ. Error %s",
                              str(ex))

        return
Example #3
0
    def uploadToAMQ(self, docs, producer=None):
        """
        _uploadToAMQ_

        Sends data to AMQ, which ends up in elastic search.
        :param docs: list of documents/dicts to be posted
        :param producer: service name that's providing this info
        """
        if not docs:
            self.logger.info("There are no documents to send to AMQ")
            return

        producer = producer or self.producer
        ts = int(time.time())
        notifications = []

        self.logger.debug("Sending the following data to AMQ %s",
                          pformat(docs))
        try:
            stompSvc = StompAMQ(username=self.userAMQ,
                                password=self.passAMQ,
                                producer=producer,
                                topic=self.topicAMQ,
                                validation_schema=None,
                                host_and_ports=self.hostPortAMQ,
                                logger=self.logger)

            for doc in docs:
                singleNotif, _, _ = stompSvc.make_notification(
                    payload=doc,
                    docType=self.docTypeAMQ,
                    ts=ts,
                    dataSubfield="payload")
                notifications.append(singleNotif)

            failures = stompSvc.send(notifications)
            msg = "%i out of %i documents successfully sent to AMQ" % (
                len(notifications) - len(failures), len(notifications))
            self.logger.info(msg)
        except Exception as ex:
            self.logger.exception("Failed to send data to StompAMQ. Error %s",
                                  str(ex))

        return
Example #4
0
def sendDoc(cred, docs):
    """
    Given a credential dict and documents to send, make notification.

    :param dict cred: credential required by StompAMQ
    :param list docs: documents to send
    :returns: None
    """

    if not docs:
        logger.info("No document going to be set to AMQ.")
        return []

    try:
        amq = StompAMQ(username=None,
                       password=None,
                       producer=cred['producer'],
                       topic=cred['topic'],
                       validation_schema=None,
                       host_and_ports=[(cred['hostport']['host'],
                                        cred['hostport']['port'])],
                       logger=logger,
                       cert=cred['cert'],
                       key=cred['key'])

        doctype = 'workflowmonit_{}'.format(cred['producer'])
        notifications = [
            amq.make_notification(payload=doc, docType=doctype)[0]
            for doc in docs
        ]
        failures = amq.send(notifications)

        logger.info("{}/{} docs successfully sent to AMQ.".format(
            (len(notifications) - len(failures)), len(notifications)))
        return failures

    except Exception as e:
        logger.exception("Failed to send data to StompAMQ. Error: {}".format(
            str(e)))
        raise
Example #5
0
def hdfs(fin, fout, token, amq, verbose):
    "perform HDFS scan"
    out = []
    data = json.load(open(fin))
    cmd = "hadoop fs -du -h -s %s"
    path = "hdfs:///path"
    for desc, path in data.items():
        size, output = run_hdfs(cmd % path)
        rec = {}
        rec['name'] = desc
        rec['path'] = path
        rec['size'] = size
        rec['type'] = 'hdfs'
        if verbose:
            print(desc, path, size, output)
        out.append(rec)

    # get monit ES info
    if token and os.path.exists(token):
        cmd = 'monit -token %s -query="stats"' % token
        output = os.popen(cmd).readlines()
        for line in output:
            index, size = line.replace('\n', '').split()
            rec = {}
            rec['name'] = index
            rec['size'] = float(size)
            rec['path'] = ''
            rec['type'] = 'elasticsearch'
            if verbose:
                print(index, size, line)
            out.append(rec)
    if amq:
        creds = credentials(amq)
        host, port = creds['host_and_ports'].split(':')
        port = int(port)
        producer = creds['producer']
        topic = creds['topic']
        username = creds['username']
        password = creds['password']
        if verbose:
            print("producer: {}, topic {}".format(producer, topic))
            print("ckey: {}, cert: {}".format(ckey, cert))
        try:
            # create instance of StompAMQ object with your credentials
            mgr = StompAMQ(username,
                           password,
                           producer,
                           topic,
                           validation_schema=None,
                           host_and_ports=[(host, port)])
            # loop over your document records and create notification documents
            # we will send to MONIT
            data = []
            for doc in out:
                # every document should be hash id
                hid = doc.get(
                    "hash",
                    1)  # replace this line with your hash id generation
                tstamp = int(time.time()) * 1000
                producer = creds["producer"]
                notification, _, _ = \
                        mgr.make_notification(doc, hid, producer=producer, ts=tstamp, dataSubfield="")
                data.append(notification)

            # send our data to MONIT
            results = mgr.send(data)
            print("AMQ submission results", results)
        except Exception as exc:
            print("Fail to send data to AMQ", str(exc))
    else:
        if fout:
            with open(fout, 'w') as ostream:
                ostream.write(json.dumps(out))
        else:
            print(json.dumps(out))
Example #6
0
def main():
    "Main function"
    optmgr = OptionParser()
    opts = optmgr.parser.parse_args()
    time0 = time.time()

    if opts.scripts:
        scripts()
        sys.exit(0)

    verbose = opts.verbose
    todate = datetime.datetime.today()
    todate = int(todate.strftime("%Y%m%d"))
    fromdate = datetime.datetime.today() - datetime.timedelta(days=1)
    fromdate = int(fromdate.strftime("%Y%m%d"))
    spec = {}
    try:
        if os.path.isfile(opts.spec):
            spec = json.load(open(opts.spec))
        else:
            spec = json.loads(opts.spec)
    except Exception as exp:
        pass
    timerange = spec.get('spec', {}).get('timerange', [fromdate, todate])
    if timerange and verbose:
        print("### TimeRang: %s" % timerange)

    hdir = opts.hdir
    if timerange:
        pat = re.compile(".*/20[0-9][0-9].*")
        if len(hdir.split()) == 1 and not pat.match(hdir):
            hdir = hdir.split()[0]
            hdirs = []
            for tval in range_dates(timerange):
                if hdir.find(tval) == -1:
                    hdirs.append(os.path.join(hdir, tval))
            hdir = hdirs
    if verbose:
        print("### HDIR: %s" % hdir)
    results = run(opts.schema, hdir, opts.script, opts.spec, verbose,
                  opts.rout, opts.yarn)
    if opts.store:
        data = {
            "results": results,
            "ts": time.time(),
            "etime": time.time() - time0
        }
        if opts.wmaid:
            data['wmaid'] = opts.wmaid
        else:
            data['wmaid'] = wmaHash(data)
        data['dtype'] = 'job'
        pdata = dict(job=data)
        postdata(opts.store, pdata, opts.ckey, opts.cert, verbose)
    elif opts.amq:
        creds = credentials(opts.amq)
        host, port = creds['host_and_ports'].split(':')
        port = int(port)
        if creds and StompAMQ:
            print("### Send %s docs via StompAMQ" % len(results))
            amq = StompAMQ(creds['username'], creds['password'], \
                    creds['producer'], creds['topic'], \
                    validation_schema=None, \
                    host_and_ports=[(host, port)])
            data = []
            for doc in results:
                hid = doc.get("hash", 1)
                if '_id' in doc:
                    del doc['_id']  # delete ObjectID from MongoDB
                producer = "wmarchive"
                tstamp = int(time.time()) * 1000
                notification, _, _ = amq.make_notification(doc,
                                                           hid,
                                                           producer=producer,
                                                           ts=tstamp,
                                                           dataSubfield="")
                data.append(notification)
            results = amq.send(data)
            print("### results from AMQ %s" % len(results))
    else:
        if isinstance(results, list):
            print("### number of results %s" % len(results))
            for doc in results:
                if '_id' in doc:
                    del doc['_id']  # delete ObjectID from MongoDB
                try:
                    print(json.dumps(doc))
                except:
                    print(doc)
        else:
            print(results)
Example #7
0
        password = creds['password']
        topic = creds['topic']
        host, port = creds['host_and_ports'].split(':')
        port = int(port)
        producer = creds['producer']
        topic = creds['topic']
        hosts = [(host, port)]
        if creds and StompAMQ:
            amq = StompAMQ(username,
                           password,
                           producer,
                           topic,
                           key=None,
                           cert=None,
                           validation_schema=None,
                           host_and_ports=[(host, port)])
            eod = False
            wait_seconds = 10
            while not eod:
                messages = []
                for d in payload:
                    notif, _, _ = amq.make_notification(
                        d, "aaa_federations_document", dataSubfield=None)
                    messages.append(notif)
                if messages:
                    print(messages)
                    amq.send(messages)
                    time.sleep(wait_seconds)
                else:
                    eod = True
Example #8
0
def run(creds, fout, date=None, ifilter=None):
    _schema = StructType([
        StructField(
            'metadata',
            StructType([StructField('timestamp', LongType(), nullable=True)])),
        StructField(
            'data',
            StructType([
                StructField('t__error_message', StringType(), nullable=True),
                StructField('src_hostname', StringType(), nullable=True),
                StructField('dst_hostname', StringType(), nullable=True)
            ])),
    ])  #schema of the FTS data that is taken
    sc = spark_session()
    if not date:
        #         tstamp = time.time()-24*60*60 # one day ago
        tstamp = time.time()  # take today
        date = time.strftime("%Y/%m/%d", time.gmtime(tstamp))
    fts_df = fts_tables(sc, date=date, schema=_schema).select(
        col('metadata.timestamp').alias('tstamp'),
        col('data.src_hostname').alias('src_hostname'),
        col('data.dst_hostname').alias('dst_hostname'),
        col('data.t__error_message').alias('error_message')
    ).where(
        'error_message <> ""'
    )  #taking non-empty messages, if date is not given then the records from yesterday are taken
    if ifilter:
        fts_df = fts_df.where(ifilter)

    fts_df.show()

    df = fts_df.toPandas()  #the messages are converted to Pandas df

    mod_name = 'word2vec_' + time.strftime(
        "%Y_%m_%d_%H_%M_%S", time.localtime(
            time.time())) + '.model'  #model is named according to the run date

    cluster = pipeline.Chain(df,
                             target='error_message',
                             mode='create',
                             model_name=mod_name)
    cluster.process()  #messages are clustered with 'clusterlogs' module

    df.loc[:, 'cluster_id'] = int(1)
    print(cluster.model_name)
    if cluster.clustering_type == 'SIMILARITY':
        df.loc[:, 'model'] = 'Levenshtein'
    else:
        df.loc[:,
               'model'] = cluster.model_name  #info about clustering model is added to the messages

    a = cluster.result.index
    for el in a:
        df.loc[cluster.result.loc[el, 'indices'],
               'cluster_id'] = str(uuid.uuid4())
        df.loc[cluster.result.loc[
            el, 'indices'], 'cluster_pattern'] = cluster.result.loc[
                el,
                'pattern']  #info about the clusters is added to the error messages

    res = df[[
        'tstamp', 'cluster_id', 'cluster_pattern', 'model', 'src_hostname',
        'dst_hostname', 'error_message'
    ]]

    print("Number of messages: ", res.shape[0])
    if fout:
        nrows = df.shape[0]
        count = 0
        now = time.time()
        with open(fout, 'w') as ostream:
            ostream.write(
                '[{"producer": "logclustering",\n "type_prefix": "raw",\n "type": "log_classification",\n "timestamp": '
                + now + ',\n "data": [' + '\n')
            for d in df_to_batches(res, 10000):
                for r in d:
                    if nrows - count == 1:  # last row to write
                        ostream.write(json.dumps(r) + '\n')
                    else:
                        ostream.write(json.dumps(r) + ',\n')
                    count += 1
            ostream.write(']]' + '\n')

    creds = credentials(creds)
    if creds:
        username = creds.get('username', '')
        password = creds.get('password', '')
        producer = creds.get('producer', 'cms-fts-logsanalysis')
        topic = creds.get('topic', '/topic/cms.fts.logsanalysis')
        host = creds.get('host', 'cms-mb.cern.ch')
        port = int(creds.get('port', 61313))
        cert = creds.get('cert', None)
        ckey = creds.get('ckey', None)
        stomp_amq = StompAMQ(username,
                             password,
                             producer,
                             topic,
                             key=ckey,
                             cert=cert,
                             validation_schema=None,
                             host_and_ports=[(host, port)])
        for d in df_to_batches(res, 10000):
            messages = []
            for msg in d:
                notif, _, _ = stomp_amq.make_notification(msg,
                                                          "training_document",
                                                          producer=producer,
                                                          dataSubfield=None)
                messages.append(notif)
            stomp_amq.send(messages)
            time.sleep(
                0.1)  #messages are sent to AMQ queue in batches of 10000

        print("Message sending is finished")
Example #9
0
def monicron(interval_code, config_path, out_base_dir, creds_path):
    """Run aggregations and push results through StompAMQ service"""
    with open(config_path, "r") as fin:
        config = json.load(fin)
    if not out_base_dir[-1] == "/":
        out_base_dir += "/"

    # Get credentials
    creds = credentials(creds_path)
    host, port = creds["host_and_ports"].split(":")
    port = int(port)
    if not creds or not StompAMQ:
        raise ValueError("missing StompAMQ credentials file")

    # Establish StompAMQ context
    amq = StompAMQ(creds["username"],
                   creds["password"],
                   creds["producer"],
                   "/topic/" + config["topic"],
                   validation_schema=None,
                   host_and_ports=[(host, port)])

    interval = ""
    results = {}
    if type(interval_code) == int:
        if interval_code > len(INTERVALS) - 1:
            raise ValueError("invalid interval code")
        else:
            interval = INTERVALS[interval_code]
            print("[monicron] Computing aggs for " + interval)
            # Run aggregations
            results = run_over_interval(config, interval, out_base_dir)
    else:
        interval = "daily"
        print("[monicron] computing aggs for yesterday:")
        # Run aggregations
        results = run_over_yesterday(config)

    # Format results and send notification through StompAMQ
    if not results:
        print("[monicron] WARNING: no results produced.")
        return
    else:
        # Get StompAMQ notification
        print("[monicron] Results:")
        print(json.dumps(results, indent=4))
        payload = results["data"]
        metadata = results["metadata"]
        doc_type = config["source_name"]
        notification, _, _ = amq.make_notification(payload,
                                                   doc_type,
                                                   metadata=metadata)

        # Get destination path in local cache
        min_datetime, max_datetime = get_time_interval(interval)
        monicron_dir = "{0}/{1}/{2}/{3}/".format(config["cache_name"],
                                                 config["source_name"],
                                                 config["namespace"], interval)
        date_dir = ""
        file_date = get_file_date(min_datetime, max_datetime)
        if interval == "daily":
            split_date = file_date.split("-")  # [month, day, year]
            split_date = [split_date[-1]] + split_date[:-1]
            date_dir = "/".join(split_date) + "/"
        else:
            date_dir = file_date + "/"

        out_path = out_base_dir + monicron_dir + date_dir
        if not os.path.exists(out_path):
            os.makedirs(out_path)

        # Write to local cache
        data = notification["body"]["data"]
        metadata = notification["body"]["metadata"]
        with open(out_path + "data.json", "w") as f_out:
            json.dump(data, f_out)
        with open(out_path + "metadata.json", "w") as f_out:
            json.dump(metadata, f_out)
        print("[monicron] Dumped results to {}".format(out_path))

        # Deliver package
        print("[monicron] Delivered the following package:")
        print(json.dumps(notification, indent=4))
        response = amq.send(notification)
        print("[monicron] Response from AMQ:")
        print(json.dumps(response, indent=4))

    return
Example #10
0
        modules = data.get("modules")
        for module in modules:
            mpayload = {}
            mpayload["module_type"] = str(module.get("type", "no type"))
            mpayload["module_label"] = str(module.get("label", "no label"))
            [subsystem, package] = findGroup(mpayload)
            mpayload["module_package"] = str(package)
            mpayload["module_subsystem"] = str(subsystem)
            mpayload[str(payload["module_type"])] = str(
                payload["module_label"])
            mpayload["events"] = int(module.get("events", 0))
            mpayload["time_thread"] = float(module.get("time_thread", 0.))
            mpayload["time_real"] = float(module.get("time_real", 0.))
            mpayload["mem_alloc"] = int(module.get("mem_alloc", 0))
            mpayload["mem_free"] = int(module.get("mem_free", 0))
            mpayload["release"] = release
            mpayload["release_queue"] = release_queue
            mpayload["release_ts"] = release_ts
            mpayload["workflow"] = workflow
            mpayload["arch"] = arch
            str2hash = release + arch + workflow + str(
                release_ts) + mpayload.get("module_label")
            mhash = hashlib.sha1(str2hash.encode()).hexdigest()
            mpayload["hash"] = mhash
            notification, _, _ = stomp_amq.make_notification(
                mpayload, "profiling_document", dataSubfield=None)
            documents.append(notification)

results = stomp_amq.send(documents)
print(results)
Example #11
0
def main():

    _schema = StructType([
        StructField(
            'metadata',
            StructType([StructField('timestamp', LongType(), nullable=True)])),
        StructField(
            'data',
            StructType([
                StructField('t__error_message', StringType(), nullable=True),
                StructField('src_hostname', StringType(), nullable=True),
                StructField('dst_hostname', StringType(), nullable=True)
            ])),
    ])  #schema of the FTS data that is taken
    sc = spark_session()
    fts_df = fts_tables(
        sc, date="2020/04/30", schema=_schema
    ).select(  #,date="2020/03/19"
        col('metadata.timestamp').alias('timestamp'),
        col('data.src_hostname').alias('src_hostname'),
        col('data.dst_hostname').alias('dst_hostname'),
        col('data.t__error_message').alias('error_message')
    ).where(
        'error_message <> ""'
    )  #taking non-empty messages, if date is not given then the records from yesterday are taken

    fts_df.show()

    df = fts_df.toPandas()  #the messages are converted to Pandas df

    mod_name = 'word2vec_' + time.strftime(
        "%Y_%m_%d_%H_%M_%S", time.localtime(
            time.time())) + '.model'  #model is named according to the run date

    cluster = pipeline.Chain(df,
                             target='error_message',
                             mode='create',
                             model_name=mod_name)
    cluster.process()  #messages are clustered with 'clusterlogs' module

    df.loc[:, 'cluster_id'] = int(1)
    print(cluster.model_name)
    if cluster.clustering_type == 'SIMILARITY':
        df.loc[:, 'model'] = 'Levenshtein'
    else:
        df.loc[:,
               'model'] = cluster.model_name  #info about clustering model is added to the messages

    a = cluster.result.index
    for el in a:
        df.loc[cluster.result.loc[el, 'indices'],
               'cluster_id'] = str(uuid.uuid4())
        df.loc[cluster.result.loc[
            el, 'indices'], 'cluster_pattern'] = cluster.result.loc[
                el,
                'pattern']  #info about the clusters is added to the error messages

    res = df[[
        'timestamp', 'cluster_id', 'cluster_pattern', 'model', 'src_hostname',
        'dst_hostname', 'error_message'
    ]]

    print("Number of messages: ", res.shape[0])

    username = ""
    password = ""
    producer = "cms-fts-logsanalysis"
    topic = "/topic/cms.fts.logsanalysis"
    host = "cms-mb.cern.ch"
    port = 61323
    cert = "/afs/cern.ch/user/n/ntuckus/.globus/usercert.pem"
    ckey = "/afs/cern.ch/user/n/ntuckus/.globus/userkey.pem"  #using StompAMQ module connection to MonIT is created

    stomp_amq = StompAMQ(username,
                         password,
                         producer,
                         topic,
                         key=ckey,
                         cert=cert,
                         validation_schema=None,
                         host_and_ports=[(host, port)])
    for d in df_to_batches(res, 10000):
        messages = []
        for msg in d:
            notif, _, _ = stomp_amq.make_notification(
                msg,
                "training_document",
                metadata={"version": "997"},
                dataSubfield=None,
                ts=msg['timestamp'])
            messages.append(notif)
        stomp_amq.send(messages)
        time.sleep(0.1)  #messages are sent to AMQ queue in batches of 10000

    print("Message sending is finished")