# loadpath=loadpath, appoint=session) testData = numpy.load(loadpath + '%s-Session%d-Data.npy' % (gender, session)) testLabel = numpy.load(loadpath + '%s-Session%d-Label.npy' % (gender, session)) testSeq = numpy.load(loadpath + '%s-Session%d-Seq.npy' % (gender, session)) for episode in range(100): graph = tensorflow.Graph() with graph.as_default(): classifier = CTC_Multi_BLSTM(trainData=None, trainLabel=None, trainSeqLength=None, featureShape=numpy.shape( testData[0])[1], numClass=5, rnnLayers=2, graphRevealFlag=False, startFlag=False) print('\nEpisode %d/100' % episode) classifier.Load(loadpath=netpath % (part, session, episode)) matrixDecode, matrixLogits, matrixSoftMax = classifier.Test_AllMethods( testData=testData, testLabel=testLabel, testSeq=testSeq) print('\n\n') print(matrixDecode) print(matrixLogits) print(matrixSoftMax)
import os if __name__ == '__main__': part = 'Bands-30' session = 6 startPosition = 13 loadpath = 'E:/CTC_Target_MSP/Feature/%s/' % part savepath = 'E:/CTC_Target_MSP/CTC-MSP-Origin/%s-Session-%d/' % (part, session) trainData, trainLabel, trainSeq, trainScription, testData, testlabel, testSeq, testScription = Load_MSP( loadpath=loadpath, appointSession=session) graph = tensorflow.Graph() with graph.as_default(): classifier = CTC_Multi_BLSTM(trainData=trainData, trainLabel=trainScription, trainSeqLength=trainSeq, featureShape=len(trainData[0][0]), numClass=5, rnnLayers=2, graphRevealFlag=False) print(classifier.information) classifier.Load(loadpath=savepath + '%04d-Network' % startPosition) for episode in range(startPosition + 1, 100): print('\nEpisode %d/100 : Total Loss = %f\n' % (episode, classifier.Train()), end='') classifier.Save(savepath=savepath + '%04d-Network' % episode) # exit()
if os.path.exists(savepath): exit() os.makedirs(savepath + 'Decode') os.makedirs(savepath + 'Logits') os.makedirs(savepath + 'SoftMax') trainData, trainLabel, trainSeq, trainScription, testData, testLabel, testSeq, testScription = Load_FAU( loadpath=loadpath) for episode in range(100): graph = tensorflow.Graph() with graph.as_default(): classifier = CTC_Multi_BLSTM(trainData=None, trainLabel=None, trainSeqLength=None, featureShape=bands, numClass=6, rnnLayers=2, graphRevealFlag=False, startFlag=False) print('\nEpisode %d/100' % episode) classifier.Load(loadpath=netpath % (bands, episode)) matrixDecode, matrixLogits, matrixSoftMax = classifier.Test_AllMethodsWithLen( testData=testData, testLabel=testLabel, testSeq=testSeq) print('\n\n') print(matrixDecode) print(matrixLogits) print(matrixSoftMax) with open(savepath + 'Decode/%04d.csv' % episode, 'w') as file: for indexX in range(5): for indexY in range(5):
from CTC_Target.Loader.IEMOCAP_Loader import Load_MSP import tensorflow from CTC_Target.Model.CTC_Multi_BLSTM import CTC_Multi_BLSTM import os if __name__ == '__main__': for part in ['Bands-30']: loadpath = 'E:/CTC_Target_MSP/Feature/%s/' % part for session in range(6, 7): savepath = 'E:/CTC_Target_MSP/CTC-MSP-Origin/%s-Session-%d/' % (part, session) if os.path.exists(savepath): continue os.makedirs(savepath) trainData, trainLabel, trainSeq, trainScription, testData, testlabel, testSeq, testScription = Load_MSP( loadpath=loadpath, appointSession=session) graph = tensorflow.Graph() with graph.as_default(): classifier = CTC_Multi_BLSTM(trainData=trainData, trainLabel=trainScription, trainSeqLength=trainSeq, featureShape=len(trainData[0][0]), numClass=5, rnnLayers=2, graphRevealFlag=False) print(classifier.information) for episode in range(100): print('\nEpisode %d/100 : Total Loss = %f\n' % (episode, classifier.Train()), end='') classifier.Save(savepath=savepath + '%04d-Network' % episode) # exit()