Example #1
0
def resampleDataInverse(sink,
                        source=None,
                        dataSizeSource=None,
                        orientation=None,
                        resolutionSource=(4.0625, 4.0625, 3),
                        resolutionSink=(25, 25, 25),
                        processingDirectory=None,
                        processes=1,
                        cleanup=True,
                        verbose=True,
                        interpolation='linear',
                        **args):
    """Resample data inversely to :func:`resampleData` routine
    
    Arguments:
        sink (str or None): image to be inversly resampled (=sink in :func:`resampleData`)
        source (str or array): destination for inversly resmapled image (=source in :func:`resampleData`)
        dataSizeSource (tuple or None): target size of the resampled image
        orientation (tuple): orientation specified by permuation and change in sign of (1,2,3)
        resolutionSource (tuple): resolution of the source image (in length per pixel)
        resolutionSink (tuple): resolution of the resampled image (in length per pixel)
        processingDirectory (str or None): directory in which to perform resmapling in parallel, None a temporary directry will be created
        processes (int): number of processes to use for parallel resampling
        cleanup (bool): remove temporary files
        verbose (bool): display progress information
        interpolation (str): method to use for interpolating to the resmapled image
    
    Returns:
        (array or str): data or file name of resampled image

    Notes: 
        * resolutions are assumed to be given for the axes of the intrinsic 
          orientation of the data and reference as when viewed by matplotlib or ImageJ
        * orientation: permuation of 1,2,3 with potential sign, indicating which 
          axes map onto the reference axes, a negative sign indicates reversal 
          of that particular axes
        * only a minimal set of information to detremine the resampling parameter 
          has to be given, e.g. dataSizeSource and dataSizeSink
    """

    #orientation
    orientation = fixOrientation(orientation)

    #assume we can read data fully into memory
    resampledData = io.readData(sink)

    dataSizeSink = resampledData.shape

    if isinstance(dataSizeSource, basestring):
        dataSizeSource = io.dataSize(dataSizeSource)

    dataSizeSource, dataSizeSink, resolutionSource, resolutionSink = resampleDataSize(
        dataSizeSource=dataSizeSource,
        dataSizeSink=dataSizeSink,
        resolutionSource=resolutionSource,
        resolutionSink=resolutionSink,
        orientation=orientation)

    #print (dataSizeSource, dataSizeSink, resolutionSource, resolutionSink )

    dataSizeSinkI = orientDataSizeInverse(dataSizeSink, orientation)

    #flip axes back and permute inversely
    if not orientation is None:
        if orientation[0] < 0:
            resampledData = resampledData[::-1, :, :]
        if orientation[1] < 0:
            resampledData = resampledData[:, ::-1, :]
        if orientation[2] < 0:
            resampledData = resampledData[:, :, ::-1]

        #reorient
        peri = inverseOrientation(orientation)
        peri = orientationToPermuation(peri)
        resampledData = resampledData.transpose(peri)

    # upscale in z
    interpolation = fixInterpolation(interpolation)

    resampledDataXY = numpy.zeros(
        (dataSizeSinkI[0], dataSizeSinkI[1], dataSizeSource[2]),
        dtype=resampledData.dtype)

    for i in range(dataSizeSinkI[0]):
        if verbose and i % 25 == 0:
            print "resampleDataInverse: processing %d/%d" % (i,
                                                             dataSizeSinkI[0])

        #cv2.resize takes reverse order of sizes !
        resampledDataXY[i, :, :] = cv2.resize(
            resampledData[i, :, :], (dataSizeSource[2], dataSizeSinkI[1]),
            interpolation=interpolation)

    # upscale x, y in parallel

    if io.isFileExpression(source):
        files = source
    else:
        if processingDirectory == None:
            processingDirectory = tempfile.mkdtemp()
        files = os.path.join(sink[0], 'resample_\d{4}.tif')

    io.writeData(files, resampledDataXY)

    nZ = dataSizeSource[2]
    pool = multiprocessing.Pool(processes=processes)
    argdata = []
    for i in range(nZ):
        argdata.append((source, fl.fileExpressionToFileName(files, i),
                        dataSizeSource, interpolation, i, nZ))
    pool.map(_resampleXYParallel, argdata)

    if io.isFileExpression(source):
        return source
    else:
        data = io.convertData(files, source)

        if cleanup:
            shutil.rmtree(processingDirectory)

        return data
Example #2
0
def resampleData(source,
                 sink=None,
                 orientation=None,
                 dataSizeSink=None,
                 resolutionSource=(4.0625, 4.0625, 3),
                 resolutionSink=(25, 25, 25),
                 processingDirectory=None,
                 processes=1,
                 cleanup=True,
                 verbose=True,
                 interpolation='linear',
                 **args):
    """Resample data of source in resolution and orientation
    
    Arguments:
        source (str or array): image to be resampled
        sink (str or None): destination of resampled image
        orientation (tuple): orientation specified by permuation and change in sign of (1,2,3)
        dataSizeSink (tuple or None): target size of the resampled image
        resolutionSource (tuple): resolution of the source image (in length per pixel)
        resolutionSink (tuple): resolution of the resampled image (in length per pixel)
        processingDirectory (str or None): directory in which to perform resmapling in parallel, None a temporary directry will be created
        processes (int): number of processes to use for parallel resampling
        cleanup (bool): remove temporary files
        verbose (bool): display progress information
        interpolation (str): method to use for interpolating to the resmapled image
    
    Returns:
        (array or str): data or file name of resampled image

    Notes: 
        * resolutions are assumed to be given for the axes of the intrinsic 
          orientation of the data and reference as when viewed by matplotlib or ImageJ
        * orientation: permuation of 1,2,3 with potential sign, indicating which 
          axes map onto the reference axes, a negative sign indicates reversal 
          of that particular axes
        * only a minimal set of information to detremine the resampling parameter 
          has to be given, e.g. dataSizeSource and dataSizeSink
    """

    orientation = fixOrientation(orientation)

    if isinstance(dataSizeSink, basestring):
        dataSizeSink = io.dataSize(dataSizeSink)

    #orient actual resolutions onto reference resolution
    dataSizeSource = io.dataSize(source)

    dataSizeSource, dataSizeSink, resolutionSource, resolutionSink = resampleDataSize(
        dataSizeSource=dataSizeSource,
        dataSizeSink=dataSizeSink,
        resolutionSource=resolutionSource,
        resolutionSink=resolutionSink,
        orientation=orientation)

    dataSizeSinkI = orientDataSizeInverse(dataSizeSink, orientation)

    #print dataSizeSource, dataSizeSink, resolutionSource, resolutionSink, dataSizeSinkI

    #rescale in x y in parallel
    if processingDirectory == None:
        processingDirectory = tempfile.mkdtemp()

    interpolation = fixInterpolation(interpolation)

    nZ = dataSizeSource[2]
    pool = multiprocessing.Pool(processes=processes)
    argdata = []
    for i in range(nZ):
        argdata.append(
            (source, os.path.join(processingDirectory,
                                  'resample_%04d.tif' % i), dataSizeSinkI,
             interpolation, i, nZ, verbose))
        #print argdata[i]
    pool.map(_resampleXYParallel, argdata)

    #rescale in z
    fn = os.path.join(processingDirectory, 'resample_%04d.tif' % 0)
    data = io.readData(fn)
    zImage = numpy.zeros((dataSizeSinkI[0], dataSizeSinkI[1], nZ),
                         dtype=data.dtype)
    for i in range(nZ):
        if verbose and i % 10 == 0:
            print "resampleData; reading %d/%d" % (i, nZ)
        fn = os.path.join(processingDirectory, 'resample_%04d.tif' % i)
        zImage[:, :, i] = io.readData(fn)

    resampledData = numpy.zeros(dataSizeSinkI, dtype=zImage.dtype)

    for i in range(dataSizeSinkI[0]):
        if verbose and i % 25 == 0:
            print "resampleData: processing %d/%d" % (i, dataSizeSinkI[0])
        #resampledImage[:, iImage ,:] =  scipy.misc.imresize(zImage[:,iImage,:], [resizedZAxisSize, sagittalImageSize[1]] , interp = 'bilinear');
        #cv2.resize takes reverse order of sizes !
        resampledData[i, :, :] = cv2.resize(
            zImage[i, :, :], (dataSizeSinkI[2], dataSizeSinkI[1]),
            interpolation=interpolation)
        #resampledData[i ,:, :] =  cv2.resize(zImage[i,:, :], (dataSize[1], resizedZSize));

    #account for using (z,y,x) array representation -> (y,x,z)
    #resampledData = resampledData.transpose([1,2,0]);
    #resampledData = resampledData.transpose([2,1,0]);

    if cleanup:
        shutil.rmtree(processingDirectory)

    if not orientation is None:

        #reorient
        per = orientationToPermuation(orientation)
        resampledData = resampledData.transpose(per)

        #reverse orientation after permuting e.g. (-2,1) brings axis 2 to first axis and we can reorder there
        if orientation[0] < 0:
            resampledData = resampledData[::-1, :, :]
        if orientation[1] < 0:
            resampledData = resampledData[:, ::-1, :]
        if orientation[2] < 0:
            resampledData = resampledData[:, :, ::-1]

        #bring back from y,x,z to z,y,x
        #resampledImage = resampledImage.transpose([2,0,1]);
    if verbose:
        print "resampleData: resampled data size: " + str(resampledData.shape)

    if sink == []:
        if io.isFileExpression(source):
            sink = os.path.split(source)
            sink = os.path.join(sink[0], 'resample_\d{4}.tif')
        elif isinstance(source, basestring):
            sink = source + '_resample.tif'
        else:
            raise RuntimeError(
                'resampleData: automatic sink naming not supported for non string source!'
            )

    return io.writeData(sink, resampledData)
Example #3
0
def resampleDataInverse(sink, source = None, dataSizeSource = None, orientation = None, resolutionSource = (4.0625, 4.0625, 3), resolutionSink = (25, 25, 25), 
                        processingDirectory = None, processes = 1, cleanup = True, verbose = True, interpolation = 'linear', **args):
    """Resample data inversely to :func:`resampleData` routine
    
    Arguments:
        sink (str or None): image to be inversly resampled (=sink in :func:`resampleData`)
        source (str or array): destination for inversly resmapled image (=source in :func:`resampleData`)
        dataSizeSource (tuple or None): target size of the resampled image
        orientation (tuple): orientation specified by permuation and change in sign of (1,2,3)
        resolutionSource (tuple): resolution of the source image (in length per pixel)
        resolutionSink (tuple): resolution of the resampled image (in length per pixel)
        processingDirectory (str or None): directory in which to perform resmapling in parallel, None a temporary directry will be created
        processes (int): number of processes to use for parallel resampling
        cleanup (bool): remove temporary files
        verbose (bool): display progress information
        interpolation (str): method to use for interpolating to the resmapled image
    
    Returns:
        (array or str): data or file name of resampled image

    Notes: 
        * resolutions are assumed to be given for the axes of the intrinsic 
          orientation of the data and reference as when viewed by matplotlib or ImageJ
        * orientation: permuation of 1,2,3 with potential sign, indicating which 
          axes map onto the reference axes, a negative sign indicates reversal 
          of that particular axes
        * only a minimal set of information to detremine the resampling parameter 
          has to be given, e.g. dataSizeSource and dataSizeSink
    """    
    
    
    #orientation
    orientation = fixOrientation(orientation);
    
    #assume we can read data fully into memory
    resampledData = io.readData(sink);

    dataSizeSink = resampledData.shape;
    
    if isinstance(dataSizeSource, basestring):
        dataSizeSource = io.dataSize(dataSizeSource);

    dataSizeSource, dataSizeSink, resolutionSource, resolutionSink = resampleDataSize(dataSizeSource = dataSizeSource, dataSizeSink = dataSizeSink, 
                                                                                      resolutionSource = resolutionSource, resolutionSink = resolutionSink, orientation = orientation);

    #print (dataSizeSource, dataSizeSink, resolutionSource, resolutionSink )
    
    dataSizeSinkI = orientDataSizeInverse(dataSizeSink, orientation);
    
    
    #flip axes back and permute inversely
    if not orientation is None:
        if orientation[0] < 0:
            resampledData = resampledData[::-1, :, :];
        if orientation[1] < 0:
            resampledData = resampledData[:, ::-1, :]; 
        if orientation[2] < 0:
            resampledData = resampledData[:, :, ::-1];

        
        #reorient
        peri = inverseOrientation(orientation);
        peri = orientationToPermuation(peri);
        resampledData = resampledData.transpose(peri);
    
    # upscale in z
    interpolation = fixInterpolation(interpolation);
    
    resampledDataXY = numpy.zeros((dataSizeSinkI[0], dataSizeSinkI[1], dataSizeSource[2]), dtype = resampledData.dtype);    
    
    for i in range(dataSizeSinkI[0]):
        if verbose and i % 25 == 0:
            print "resampleDataInverse: processing %d/%d" % (i, dataSizeSinkI[0])

        #cv2.resize takes reverse order of sizes !
        resampledDataXY[i ,:, :] =  cv2.resize(resampledData[i,:,:], (dataSizeSource[2], dataSizeSinkI[1]), interpolation = interpolation);

    # upscale x, y in parallel
    
    if io.isFileExpression(source):
        files = source;
    else:
        if processingDirectory == None:
            processingDirectory = tempfile.mkdtemp();   
        files = os.path.join(sink[0], 'resample_\d{4}.tif');
    
    io.writeData(files, resampledDataXY);
    
    nZ = dataSizeSource[2];
    pool = multiprocessing.Pool(processes=processes);
    argdata = [];
    for i in range(nZ):
        argdata.append( (source, fl.fileExpressionToFileName(files, i), dataSizeSource, interpolation, i, nZ) );  
    pool.map(_resampleXYParallel, argdata);
    
    if io.isFileExpression(source):
        return source;
    else:
        data = io.convertData(files, source);
        
        if cleanup:
            shutil.rmtree(processingDirectory);
        
        return data;
Example #4
0
def stitchData(xmlPlacementFile, resultPath, algorithm = None, resolutions = None, form = None, channel = None, subRegion = None, bitDepth = None, blockSize = None, cleanup = True, compress = False):
  """Runs the final stiching step of TeraSticher
  
  Arguments:
    xmlPlacementFile (str or None): the xml placement descriptor
    resultPath (str): result path, file name or file expression for the stiched data
    algorithm (str or None): optional algorithm to use for placement: 
                             'NOBLEND' for no blending
                             'SINBLEND' for sinusoidal blending
    resolutions (tuple or None): the different resolutions to produce
    form (str or None): the output form, if None determined automatically
    channel (str or None): the channels to use, 'R', 'G', 'B' or 'all'
    subRegion (tuple or None): optional sub region in the form ((xmin,xmax),(ymin,ymax), (zmin, zmax))
    bitDepth (int or None): the pits per pixel to use, default is 8
    blockSize (tuple): the sizes of various blocks to save stiched image into
    cleanup (bool): if True delete the TeraSticher file structure
    compress (bool): if True compress final tif images
  
  Returns:
    str : the result path or file name of the stiched data
    
  See also:
    `TeraStitcher project step <https://github.com/abria/TeraStitcher/wiki/Step-6:-Merge>`_.
  """
  
  checkSticherInitialized();
  global TeraStitcherBinary;
  
  cmd = TeraStitcherBinary + ' --merge --imout_format="tif" ';
  
  cmd = cmd + '--projin="' + xmlPlacementFile + '" ';
  
  if len(resultPath) > 3 and resultPath[-4:] == '.tif':
    if io.isFileExpression(resultPath, check = False):
      form = 'TiledXY|2Dseries';
      resultPath, filename = os.path.split(resultPath);
    else:      
      form = 'TiledXY|3Dseries';
      resultPath, filename = os.path.split(resultPath);
  else:
    filename = None;
  
  cmd = cmd + '--volout="' + resultPath + '" ';
  
  if algorithm is not None:
    cmd = cmd + ' --algorithm="' + algorithm + '" ';
    
  if resolutions is not None:
    cmd = cmd + '--resolutions="'
    for r in sorted(resolutions):
      cmd = cmd + str(r);
    cmd = cmd + ' ';
    
  if form is not None:
    cmd = cmd + '--volout_plugin="' + form + '" ';
  
  if channel is not None:
    cmd = cmd + '--imin_channel="' + channel + '" ';
  
  if subRegion is not None:
    sns = (('--R0=', '--R1='), ('--C0=', '--C1='), ('--D0=', '--D1-'));
    for d in range(3):
      for m in range(2):
        if subRegion[d][m] is not None:
          cmd = cmd + sns[d][m] + str(subRegion[d][m]) + ' ';
          
  if blockSize is not None:
    bs = ('--slicewidth=', '--sliceheight=', '--slicedepth=');
    for d in range(3):
      if blockSize[d] is not None:
        cmd = cmd + bs[d] + str(blockSize[d]) + ' ';
  
  if bitDepth is not None:
    cmd = cmd + '--imout_depth=' + str(bitDepth) + ' ';
    
  if not compress:
    cmd = cmd + '--libtiff_uncompress ';  
    
  #print resultPath
  io.createDirectory(resultPath, split = False)
    
  print 'running: ' + cmd;
  res = os.system(cmd);
  
  if res != 0:
    raise RuntimeError('stitchData: failed executing: ' + cmd);
  
  if filename is not None:
    
    if io.isFileExpression(filename, check = False): # convert list of files in TeraSticher from
      #TODO: multiple resolutions
      basedir = max(glob.glob(os.path.join(resultPath, '*')), key = os.path.getmtime);
      if cleanup:
        moveTeraStitcherStackToFileList(basedir, os.path.join(resultPath, filename), deleteDirectory=True);
        #shutil.rmtree(basedir);
      else:
        copyTeraStitcherStackToFileList(basedir, os.path.join(resultPath, filename));

    else:   # single file in TeraSticher folder
      #get most recent created file 
      #TODO: test if this works
      imgfile = max(glob.glob(os.path.join(resultPath, '*/*/*/*')), key = os.path.getmtime);
      filename = os.path.join(resultPath, filename);
      os.rename(imgfile, filename);
      if cleanup:
        imgpath = os.path.sep.join(imgfile.split(os.path.sep)[:-3]);
        shutil.rmtree(imgpath)
      return filename;
  
  else:
    
    return resultPath;
Example #5
0
def resampleData(source, sink = None,  orientation = None, dataSizeSink = None, resolutionSource = (4.0625, 4.0625, 3), resolutionSink = (25, 25, 25), 
                 processingDirectory = None, processes = 1, cleanup = True, verbose = True, interpolation = 'linear', **args):
    """Resample data of source in resolution and orientation
    
    Arguments:
        source (str or array): image to be resampled
        sink (str or None): destination of resampled image
        orientation (tuple): orientation specified by permuation and change in sign of (1,2,3)
        dataSizeSink (tuple or None): target size of the resampled image
        resolutionSource (tuple): resolution of the source image (in length per pixel)
        resolutionSink (tuple): resolution of the resampled image (in length per pixel)
        processingDirectory (str or None): directory in which to perform resmapling in parallel, None a temporary directry will be created
        processes (int): number of processes to use for parallel resampling
        cleanup (bool): remove temporary files
        verbose (bool): display progress information
        interpolation (str): method to use for interpolating to the resmapled image
    
    Returns:
        (array or str): data or file name of resampled image

    Notes: 
        * resolutions are assumed to be given for the axes of the intrinsic 
          orientation of the data and reference as when viewed by matplotlib or ImageJ
        * orientation: permuation of 1,2,3 with potential sign, indicating which 
          axes map onto the reference axes, a negative sign indicates reversal 
          of that particular axes
        * only a minimal set of information to detremine the resampling parameter 
          has to be given, e.g. dataSizeSource and dataSizeSink
    """
        
    orientation = fixOrientation(orientation);
    
    if isinstance(dataSizeSink, basestring):
        dataSizeSink = io.dataSize(dataSizeSink);

    #orient actual resolutions onto reference resolution    
    dataSizeSource = io.dataSize(source);
        
    dataSizeSource, dataSizeSink, resolutionSource, resolutionSink = resampleDataSize(dataSizeSource = dataSizeSource, dataSizeSink = dataSizeSink, 
                                                                                      resolutionSource = resolutionSource, resolutionSink = resolutionSink, orientation = orientation);
    
    dataSizeSinkI = orientDataSizeInverse(dataSizeSink, orientation);
    
    #print dataSizeSource, dataSizeSink, resolutionSource, resolutionSink, dataSizeSinkI
    
     
    #rescale in x y in parallel
    if processingDirectory == None:
        processingDirectory = tempfile.mkdtemp();     
        
    interpolation = fixInterpolation(interpolation);
     
    nZ = dataSizeSource[2];
    pool = multiprocessing.Pool(processes=processes);
    argdata = [];
    for i in range(nZ):
        argdata.append( (source, os.path.join(processingDirectory, 'resample_%04d.tif' % i), dataSizeSinkI, interpolation, i, nZ, verbose) );  
        #print argdata[i]
    pool.map(_resampleXYParallel, argdata);
    
    #rescale in z
    fn = os.path.join(processingDirectory, 'resample_%04d.tif' % 0);
    data = io.readData(fn);
    zImage = numpy.zeros((dataSizeSinkI[0], dataSizeSinkI[1], nZ), dtype = data.dtype);    
    for i in range(nZ):
        if verbose and i % 10 == 0:
            print "resampleData; reading %d/%d" % (i, nZ);
        fn = os.path.join(processingDirectory, 'resample_%04d.tif' % i);
        zImage[:,:, i] = io.readData(fn);

    
    resampledData = numpy.zeros(dataSizeSinkI, dtype = zImage.dtype);

    for i in range(dataSizeSinkI[0]):
        if verbose and i % 25 == 0:
            print "resampleData: processing %d/%d" % (i, dataSizeSinkI[0])
        #resampledImage[:, iImage ,:] =  scipy.misc.imresize(zImage[:,iImage,:], [resizedZAxisSize, sagittalImageSize[1]] , interp = 'bilinear'); 
        #cv2.resize takes reverse order of sizes !
        resampledData[i ,:, :] =  cv2.resize(zImage[i,:,:], (dataSizeSinkI[2], dataSizeSinkI[1]), interpolation = interpolation);
        #resampledData[i ,:, :] =  cv2.resize(zImage[i,:, :], (dataSize[1], resizedZSize));
    

    #account for using (z,y,x) array representation -> (y,x,z)
    #resampledData = resampledData.transpose([1,2,0]);
    #resampledData = resampledData.transpose([2,1,0]);
    
    if cleanup:
        shutil.rmtree(processingDirectory);

    if not orientation is None:
        
        #reorient
        per = orientationToPermuation(orientation);
        resampledData = resampledData.transpose(per);
    
        #reverse orientation after permuting e.g. (-2,1) brings axis 2 to first axis and we can reorder there
        if orientation[0] < 0:
            resampledData = resampledData[::-1, :, :];
        if orientation[1] < 0:
            resampledData = resampledData[:, ::-1, :]; 
        if orientation[2] < 0:
            resampledData = resampledData[:, :, ::-1];
        
        #bring back from y,x,z to z,y,x
        #resampledImage = resampledImage.transpose([2,0,1]);
    if verbose:
        print "resampleData: resampled data size: " + str(resampledData.shape)  
    
    if sink == []:
        if io.isFileExpression(source):
            sink = os.path.split(source);
            sink = os.path.join(sink[0], 'resample_\d{4}.tif');
        elif isinstance(source, basestring):
            sink = source + '_resample.tif';
        else:
            raise RuntimeError('resampleData: automatic sink naming not supported for non string source!');
    
    return io.writeData(sink, resampledData);