def _test(): """Tests""" import ClearMap.Tests.Files as tsf import ClearMap.Visualization.Plot3d as p3d import ClearMap.ImageProcessing.LightsheetCorrection as ls from importlib import reload reload(ls) s = tsf.source('vasculature_lightsheet_raw') #p3d.plot(s) import ClearMap.ImageProcessing.Experts.Vasculature as vasc clipped, mask, high, low = vasc.clip(s[:, :, 80:120], clip_range=(400, 60000)) corrected = ls.correct_lightsheet(clipped, mask=mask, percentile=0.25, lightsheet=dict(selem=(150, 1, 1)), background=dict(selem=(200, 200, 1), spacing=(25, 25, 1), step=(2, 2, 1), interpolate=1), lightsheet_vs_background=2) p3d.plot([clipped, corrected])
def equalize(source, percentile = (0.5, 0.95), max_value = 1.5, selem = (200,200,5), spacing = (50,50,5), interpolate = 1, mask = None): equalized = ls.local_percentile(source, percentile=percentile, mask=mask, dtype=float, selem=selem, spacing=spacing, interpolate=interpolate); normalize = 1/np.maximum(equalized[...,0], 1); maxima = equalized[...,1]; ids = maxima * normalize > max_value; normalize[ids] = max_value / maxima[ids]; equalized = np.array(source, dtype = float) * normalize; return equalized;
def _test(): """Tests.""" import numpy as np import ClearMap.Visualization.Plot3d as p3d import ClearMap.ImageProcessing.LocalStatistics as ls from importlib import reload reload(ls) source = np.random.rand(100, 200, 150) + np.arange(100)[:, None, None] p = ls.local_percentile(source, percentile=0.5, selem=(30, 30, 30), interpolate=1) p3d.plot([source, p])
def threshold_adaptive(source, function = threshold_isodata, selem = (100,100,3), spacing = (25,25,3), interpolate = 1, mask = None, step = None): source = io.as_source(source)[:]; threshold = ls.apply_local_function(source, function=function, mask=mask, dtype=float, selem=selem, spacing=spacing, interpolate=interpolate, step = step); return threshold
def correct_lightsheet(source, percentile=0.25, max_bin=2**12, mask=None, lightsheet=dict(selem=(150, 1, 1)), background=dict(selem=(200, 200, 1), spacing=(25, 25, 1), interpolate=1, dtype=float, step=(2, 2, 1)), lightsheet_vs_background=2, return_lightsheet=False, return_background=False, verbose=True): """Removes lightsheet artifacts. Arguments --------- source : array The source to correct. percentile : float in [0,1] Ther percentile to base the lightsheet correction on. max_bin : int The maximal bin to use. Max_bin needs to be >= the maximal value in the source. mask : array or None Optional mask. lightsheet : dict Parameter to pass to the percentile routine for the lightsheet artifact estimate. See :func:`ImageProcessing.Filter.Rank.percentile`. background : dict Parameter to pass to the percentile rouitne for the background estimation. lightsheet_vs_background : float The background is multiplied by this weight before comparing to the lightsheet artifact estimate. return_lightsheet : bool If True, return the lightsheeet artifact estimate. return_background : bool If True, return the background estimate. verbose : bool If True, print progress information. Returns ------- corrected : array Lightsheet artifact corrected image. lightsheet : array The lightsheet artifact estimate. background : array The background estimate. Note ---- The routine implements a fast but efftice way to remove lightsheet artifacts. Effectively the percentile in an eleoganted structural element along the lightsheet direction centered around each pixel is calculated and then compared to the percentile in a symmetrical box like structural element at the same pixel. The former is an estimate of the lightsheet artifact the latter of the backgrond. The background is multiplied by the factor lightsheet_vs_background and then the minimum of both results is subtracted from the source. Adding an overall background estimate helps to not accidentally remove vessesl like structures along the light-sheet direction. """ if verbose: timer = tmr.Timer() #lightsheet artifact estimate l = rnk.per.percentile(source, percentile=percentile, max_bin=max_bin, mask=mask, **lightsheet) if verbose: timer.print_elapsed_time( 'LightsheetCorrection: lightsheet artifact done') #background estimate b = ls.local_percentile(source, percentile=percentile, mask=mask, **background) if verbose: timer.print_elapsed_time('LightsheetCorrection: background done') #combined estimate lb = np.minimum(l, lightsheet_vs_background * b) #corrected image c = source - np.minimum(source, lb) if verbose: timer.print_elapsed_time('LightsheetCorrection: done') result = (c, ) if return_lightsheet: result += (l, ) if return_background: result += (b, ) if len(result) == 1: result = result[0] return result