Example #1
0
def _test():
    import numpy as np
    import ClearMap.ParallelProcessing.DataProcessing.ArrayProcessing as ap

    ## Lookup table processing

    #apply_lut
    x = np.random.randint(0, 100, size=(20, 30))
    lut = np.arange(100) + 1
    y = ap.apply_lut(x, lut)
    assert np.all(y == x + 1)

    #apply_lut_to_index
    import ClearMap.ImageProcessing.Topology.Topology3d as t3d
    kernel = t3d.index_kernel(dtype=int)

    import ClearMap.ImageProcessing.Binary.Smoothing as sm
    lut = sm.initialize_lookup_table()

    data = np.array(np.random.rand(150, 30, 40) > 0.75, order='F')

    result = ap.apply_lut_to_index(data, kernel, lut, sink=None, verbose=True)

    import ClearMap.Visualization.Plot3d as p3d
    p3d.plot([[data, result]])

    ### Correlation

    #correlate1d
    kernel = np.array(range(11), dtype='uint32')
    data = np.array(np.random.randint(0,
                                      2**27, (300, 400, 1500),
                                      dtype='uint32'),
                    order='F')
    #data = np.array(np.random.rand(3,4,5), order='F');

    data = np.empty((300, 400, 1500), order='F')
    kernel = np.array([1, 2, 3, 4, 5], dtype='uint8')

    sink = 'test.npy'

    import ClearMap.Utils.Timer as tmr
    import scipy.ndimage as ndi
    timer = tmr.Timer()
    for axis in range(3):
        print(axis)
        corr_ndi = ndi.correlate1d(data, axis=axis, mode='constant', cval=0)
    timer.print_elapsed_time('ndi')

    timer = tmr.Timer()
    for axis in range(3):
        print(axis)
        corr = ap.correlate1d(data,
                              sink=sink,
                              kernel=kernel,
                              axis=axis,
                              verbose=False,
                              processes=None)
    timer.print_elapsed_time('ap')

    assert np.allclose(corr.array, corr_ndi)

    # IO
    import ClearMap.ParallelProcessing.DataProcessing.ArrayProcessing as ap
    import numpy as np
    reload(ap)

    data = np.random.rand(10, 200, 10)

    sink = ap.write('test.npy', data, verbose=True)
    assert (np.all(sink.array == data))

    read = ap.read('test.npy', verbose=True)
    assert (np.all(read.array == data))

    ap.io.delete_file('test.npy')

    # where
    reload(ap)
    data = np.random.rand(30, 20, 40) > 0.5

    where_np = np.array(np.where(data)).T
    where = ap.where(data, cutoff=2**0)

    check_np = np.zeros(data.shape, dtype=bool)
    check = np.zeros(data.shape, dtype=bool)
    check_np[tuple(where_np.T)] = True
    check[tuple(where.array.T)] = True
    assert (np.all(check_np == check))
Example #2
0
def _test():
  import numpy as np  
  import ClearMap.ParallelProcessing.DataProcessing.ArrayProcessing as ap 
  
  from importlib import reload
  reload(ap)
  
  
  ## Lookup table processing
  
  #apply_lut  
  x = np.random.randint(0, 100, size=(20,30));
  lut = np.arange(100) + 1;
  y = ap.apply_lut(x, lut)
  assert np.all(y == x+1)

  #apply_lut_to_index
  import ClearMap.ImageProcessing.Topology.Topology3d as t3d
  kernel = t3d.index_kernel(dtype=int);
  
  import ClearMap.ImageProcessing.Binary.Smoothing as sm
  lut = sm.initialize_lookup_table()
    
  data = np.random.randint(0, 2, (1500,300,400), dtype = bool)
  
  #reload(ap)
  result = ap.apply_lut_to_index(data, kernel, lut, sink=None, verbose=True)

  import ClearMap.Visualization.Plot3d as p3d
  p3d.plot([data, result])    
  
  
  ## Correlation 
  
  #correlate1d
  #reload(ap)
  axis = 1;
  kernel = np.array(range(11), dtype='uint32');  
  data = np.random.randint(0, 2**27, (1000, 1500,100), dtype='uint32');

  corr = ap.correlate1d(data, kernel, axis=axis, verbose=True, processes=10);
  
  import scipy.ndimage as ndi
  import ClearMap.Utils.Timer as tmr
  timer = tmr.Timer();
  corr_ndi = ndi.correlate1d(data, kernel, axis=axis, mode='constant',cval=0);
  timer.print_elapsed_time('ndi')  
  
  assert np.allclose(corr, corr_ndi)
  
  

#
#
#
#
#
#default_blocks_per_process = 10;
#"""Default number of blocks per process to split the data.
#
#Note
#----
#10 blocks per process is a good choice.
#"""
#
#default_cutoff = 20000000;
#"""Default size of array below which ordinary numpy is used.
#
#Note
#----
#Ideally test this on your machine for different array sizes.
#"""
#
#
#
#def blockRanges(data, blocks = None,  processes = defaultProcesses):
#  """Ranges of evenly spaced blocks in array
#  
#  Arguments:
#    data : array
#      array to divide in blocks
#    blocks : int or None
#      number of blocks to split array into
#    processes : None or int
#      number of processes, if None use number of cpus
#    
#  Returns:
#    array
#      list of the range boundaries
#  """
#  if processes is None:
#    processes = defaultProcesses;
#  if blocks is None:
#    blocks = processes * defaultBlocksPerProcess;
#   
#  d = data.reshape(-1, order = 'A'); 
#  blocks = min(blocks, d.shape[0]);
#  return np.array(np.linspace(0,  d.shape[0], blocks + 1), dtype = int);
#
#
#def blockSums(data, blocks = None, processes = defaultProcesses):
#  """Sums of evenly spaced blocks in array
#  
#  Arguments:
#    data : array
#      array to perform the block sums on
#    blocks : int or None
#      number of blocks to split array into
#    processes : None or int
#      number of processes, if None use number of cpus
#    
#  Returns:
#    array
#      sums of the values in the different blocks
#  """
#  if processes is None:
#    processes = defaultProcesses;
#  if blocks is None:
#    blocks = processes * defaultBlocksPerProcess;
#  
#  d = data.reshape(-1, order = 'A');
#  if data.dtype == bool:
#    d = d.view('uint8')
#  
#  return code.blockSums1d(d, blocks = blocks, processes = processes);
#  
#
#def where(data, out = None, blocks = None, cutoff = defaultCutoff, processes = defaultProcesses):
#  """Returns the indices of the non-zero entries of the array
#  
#  Arguments:
#    data : array
#      array to search for nonzero indices
#    out : array or None
#      if not None results is written into this array
#    blocks : int or None
#      number of blocks to split array into for parallel processing
#    cutoff : int
#      number of elements below whih to switch to numpy.where
#    processes : None or int
#      number of processes, if None use number of cpus
#    
#  Returns:
#    array
#      positions of the nonzero entries of the input array
#  
#  Note:
#    Uses numpy.where if there is no match of dimension implemented!
#  """ 
#  if data.ndim != 1 and data.ndim != 3:
#    raise Warning('Using numpy where for dimension %d and type %s!' % (data.ndim, data.dtype))
#    return np.vstack(np.where(data)).T;
#
#  if cutoff is None:
#    cutoff = 1;
#  cutoff = min(1, cutoff);
#  if data.size <= cutoff:
#    return np.vstack(np.where(data)).T;
#
#  if processes is None:
#    processes = defaultProcesses;
#  if blocks is None:
#    blocks = processes * defaultBlocksPerProcess;
#  
#  if data.dtype == bool:
#    d = data.view('uint8')
#  else:
#    d = data;
#  
#  if out is None:
#    if d.ndim == 1:
#      sums = code.blockSums1d(d, blocks = blocks, processes = processes);
#    else:
#      sums = code.blockSums3d(d, blocks = blocks, processes = processes);
#    out = np.squeeze(np.zeros((np.sum(sums), data.ndim), dtype = np.int));
#  else:
#    sums = None;
#  
#  if d.ndim == 1:
#    code.where1d(d, out = out, sums = sums, blocks = blocks, processes = processes);
#  else: # d.ndim == 3:
#    code.where3d(d, out = out, sums = sums, blocks = blocks, processes = processes);
#    
#  return out;
#
#
#
#
#def setValue(data, indices, value, cutoff = defaultCutoff, processes = defaultProcesses):
#  """Set value at specified indices of an array
#  
#  Arguments:
#    data : array
#      array to search for nonzero indices
#    indices : array or None
#      list of indices to set
#    value : numeric or bool
#      value to set elements in data to
#    processes : None or int
#      number of processes, if None use number of cpus
#    
#  Returns:
#    array
#      array with specified entries set to new value
#  
#  Note:
#    Uses numpy if there is no match of dimension implemented!
#  """
#  if data.ndim != 1:
#    raise Warning('Using numpy where for dimension %d and type %s!' % (data.ndim, data.dtype))
#    data[indices] = value;
#    return data;
#    
#  if cutoff is None:
#    cutoff = 1;
#  cutoff = min(1, cutoff);
#  if data.size <= cutoff:
#    data[indices] = value;
#    return data;
#  
#  if processes is None:
#    processes = defaultProcesses;
#  
#  if data.dtype == bool:
#    d = data.view('uint8')
#  else:
#    d = data;
#  
#  code.set1d(d, indices, value, processes = processes);
#  
#  return data;
#
#
#def setArray(data, indices, values, cutoff = defaultCutoff, processes = defaultProcesses):
#  """Set value at specified indices of an array
#  
#  Arguments:
#    data : array
#      array to search for nonzero indices
#    indices : array or None
#      list of indices to set
#    values : array
#      values to set elements in data to
#    processes : None or int
#      number of processes, if None use number of cpus
#    
#  Returns:
#    array
#      array with specified entries set to new value
#  
#  Note:
#    Uses numpy if there is no match of dimension implemented!
#  """
#  if data.ndim != 1:
#    raise Warning('Using numpy where for dimension %d and type %s!' % (data.ndim, data.dtype))
#    data[indices] = values;
#    return data;
#    
#  if cutoff is None:
#    cutoff = 1;
#  cutoff = min(1, cutoff);
#  if data.size <= cutoff:
#    data[indices] = values;
#    return data;
#  
#  if processes is None:
#    processes = defaultProcesses;
#  
#  if data.dtype == bool:
#    d = data.view('uint8')
#  else:
#    d = data;
#  
#  code.set1darray(d, indices, values, processes = processes);
#  
#  return data;
#
#
#
#def take(data, indices, out = None, cutoff = defaultCutoff, processes = defaultProcesses):
#  """Extracts the values at specified indices
#  
#  Arguments:
#    data : array
#      array to search for nonzero indices
#    out : array or None
#      if not None results is written into this array
#    cutoff : int
#      number of elements below whih to switch to numpy.where
#    processes : None or int
#      number of processes, if None use number of cpus
#    
#  Returns:
#    array
#      positions of the nonzero entries of the input array
#  
#  Note:
#    Uses numpy data[indices] if there is no match of dimension implemented!
#  """ 
#  if data.ndim != 1:
#    raise Warning('Using numpy where for dimension %d and type %s!' % (data.ndim, data.dtype))
#    return data[indices];
#
#  if cutoff is None:
#    cutoff = 1;
#  cutoff = min(1, cutoff);
#  if data.size < cutoff:
#    return data[indices];
#
#  if processes is None:
#    processes = defaultProcesses;
#  
#  if data.dtype == bool:
#    d = data.view('uint8')
#  else:
#    d = data;
#
#  if out is None:
#    out = np.empty(len(indices), dtype = data.dtype);
#  if out.dtype == bool:
#    o = out.view('uint8');
#  else:
#    o = out;
#  
#  code.take1d(d, indices, o, processes = processes);
#  
#  return out;
#
#
#def match(match, indices, out = None):
#  """Matches a sorted list of 1d indices to another larger one 
#  
#  Arguments:
#    match : array
#      array of indices to match to indices
#    indices : array or None
#      array of indices
#  
#  Returns:
#    array
#      array with specified entries set to new value
#  
#  Note:
#    Uses numpy if there is no match of dimension implemented!
#  """
#  if match.ndim != 1:
#    raise ValueError('Match array dimension required to be 1d, found %d!' % (match.ndim))
#  if indices.ndim != 1:
#    raise ValueError('Indices array dimension required to be 1d, found %d!' % (indices.ndim))  
#  
#  if out is None:
#    out = np.empty(len(match), dtype = match.dtype);
#  
#  code.match1d(match, indices, out);
#  
#  return out;
#
#
# Find neighbours in an index list
#
#
#def neighbours(indices, offset, processes = defaultProcesses):
#  """Returns all pairs of indices that are apart a specified offset"""
#  return code.neighbours(indices, offset = offset,  processes = processes);
#
#
#def findNeighbours(indices, center, shape, strides, mask):
#  """Finds all indices within a specified kernel region centered at a point"""
#  
#  if len(strides) != 3 or len(shape) != 3 or (strides[0] != 1 and strides[2] != 1):
#    raise RuntimeError('only 3d C or F contiguous arrays suported');
#
#  if isinstance(mask, int):
#    mask = (mask,);
#  if isinstance(mask, tuple):
#    mask = mask * 3;
#    return code.neighbourlistRadius(indices, center, shape[0], shape[1], shape[2], 
#                                                     strides[0], strides[1], strides[2], 
#                                                     mask[0], mask[1], mask[2]);
#  else:
#    if mask.dtype == bool:
#      mask = mask.view(dtype = 'uint8');
#                                                
#    return code.neighbourlistMask(indices, center, shape[0], shape[1], shape[2], strides[0], strides[1], strides[2], mask);
# 
# Loading and saving
#
#def readNumpyHeader(filename):
#  """Read numpy array information including offset to data
#  
#  Arguments:
#    filename : str
#      file name of the numpy file
#      
#  Returns:
#    shape : tuple
#      shape of the array
#    dtype : dtype
#      data type of array 
#    order : str
#      'C' for c and 'F' for fortran order
#    offset : int
#      offset in bytes to data buffer in file
#  """
#  with open(filename, 'rb') as fhandle:
#    major, minor = np.lib.format.read_magic(fhandle);
#    shape, fortran, dtype = np.lib.format.read_array_header_1_0(fhandle);
#    offset = fhandle.tell()
#  
#  order = 'C';
#  if fortran:
#    order = 'F';
#    
#  return (shape, dtype, order, offset)
# 
# 
#def _offsetFromSlice(sourceSlice, order = 'F'):
#  """Checks if slice is compatible with the large data loader and returns z coordiante"""
#   
#  if order == 'C':
#    os = 1; oe = 3; oi = 0;
#  else:
#    os = 0; oe = 2; oi = 2;
#  
#  for s in sourceSlice[os:oe]:
#    if s.start is not None or s.stop is not None or s.step is not None:
#        raise RuntimeError('sub-regions other than in slowest dimension %d not supported!  slice = %r' % (oi, sourceSlice))
#  
#  s = sourceSlice[oi];
#  if s.step is not None:
#      raise RuntimeError('sub-regions with non unity steps not supported')
#  
#  if s.start is None:
#    s = 0;
#  else:
#    s = s.start;
#    
#  return s;
#
#
#def load(filename, region = None, shared = False, blocks = None, processes = cpu_count(), verbose = False):
#  """Load a large npy array into memory in parallel
#  
#  Arguments:
#    filename : str
#      filename of array to load
#    region : Region or None
#      if not None this specifies the sub-region to read
#    shared : bool
#      if True read into shared memory
#    blocks : int or None
#      number of blocks to split array into for parallel processing
#    processes : None or int
#      number of processes, if None use number of cpus
#    verbose : bool
#      print info about the file to be loaded
#    
#  Returns:
#    array 
#      the data as numpy array
#  """
#  if processes is None:
#    processes = cpu_count();
#  if blocks is None:
#    blocks = processes * defaultBlocksPerProcess;
#  
#  #get specs from header specs
#  shape, dtype, order, offset = readNumpyHeader(filename);
#  if verbose:
#    timer = tmr.Timer();
#    print('Loading array of shape = %r, dtype = %r, order = %r, offset = %r' %(shape, dtype, order, offset)); 
#  
#  if region is not None:
#    shape = region.shape();  
#    sourceSlice = region.sourceSlice();
#    off = _offsetFromSlice(sourceSlice, order = order);
#  
#  if shared:
#    data = shm.create(shape, dtype = dtype, order = order);
#  else:
#    data = np.empty(shape, dtype = dtype, order = order);
#  
#  d = data.reshape(-1, order = 'A');
#  if dtype == bool:
#    d = d.view('uint8');  
#  
#  if region is not None:
#    if order == 'F':
#      offset += data.strides[-1] * off;  
#    else:
#      offset += data.strides[1] * off;  
#  
#  code.load(data = d, filename = filename, offset = offset, blocks = blocks, processes = processes);
#  
#  if verbose:
#    timer.printElapsedTime(head = 'Loading array from %s' % filename);
#           
#  return data;
#
#
#
#
#def save(filename, data, region = None, blocks = None, processes = cpu_count(), verbose = False):
#  """Save a large npy array to disk in parallel
#  
#  Arguments:
#    filename : str
#      filename of array to load
#    data : array
#      array to save to disk
#    blocks : int or None
#      number of blocks to split array into for parallel processing
#    processes : None or int
#      number of processes, if None use number of cpus
#    verbose : bool
#      print info about the file to be loaded
#    
#  Returns:
#    str 
#      the filename of the numpy array on disk
#  """
#  if processes is None:
#    processes = cpu_count();
#  if blocks is None:
#    blocks = processes * defaultBlocksPerProcess;
#  
#  if region is None:
#    #create file on disk via memmap
#    memmap = np.lib.format.open_memmap(filename, mode = 'w+', shape = data.shape, dtype = data.dtype, fortran_order = np.isfortran(data));
#    memmap.flush();
#    del(memmap);
#  
#  #get specs from header specs
#  shape, dtype, order, offset = readNumpyHeader(filename);
#  if verbose:
#    timer = tmr.Timer();
#    print('Saving array of shape = %r, dtype = %r, order = %r, offset = %r' %(shape, dtype, order, offset)); 
#  
#  if (np.isfortran(data) and order != 'F') or (not np.isfortran(data) and order != 'C'):
#    raise RuntimeError('Order of arrays do not match isfortran=%r and order=%s' % (np.isfortran(data), order));
#  
#  d = data.reshape(-1, order = 'A');
#  if dtype == bool:
#    d = d.view('uint8');
#    
#  if region is not None:
#    sourceSlice = region.sourceSlice();
#    off = _offsetFromSlice(sourceSlice, order = order);
#    if order == 'F':
#      offset += data.strides[-1] * off;
#    else:
#      offset += data.strides[1] * off;
#  
#  #print d.dtype, filename, offset, blocks, processes
#  
#  code.save(data = d, filename = filename, offset = offset, blocks = blocks, processes = processes);
#  
#  if verbose:
#    timer.printElapsedTime(head = 'Saving array to %s' % filename);
#           
#  return filename;
#
#
#
#
#
#
#if __name__ == "__main__":
#  
#  import numpy as np
#  from ClearMap.Utils.Timer import Timer;
#  import ClearMap.DataProcessing.LargeData as ld
#  reload(ld)
#  
#  
#  #dat = np.random.rand(2000,2000,1000) > 0.5;
#  #dat = np.random.rand(1000,1000,500) > 0.5;
#  dat = np.random.rand(200,300,400) > 0.5;  
#  #datan = io.MMP.writeData('test.npy', dat);
#  
#  dat = np.load('data.npy')
#  xyz1 = np.load('points.npy')
#  
#  s = ld.sum(dat)
#  print(s == np.sum(s))
#
#
#  timer = Timer();
#  xyz = ld.where(dat)
#  timer.printElapsedTime('parallel')
#  #parallel: elapsed time: 0:00:25.807
#  
#  timer = Timer();
#  xyz1 = np.vstack(np.where(dat)).T
#  timer.printElapsedTime('numpy')
#  #numpy: elapsed time: 0:05:45.590
#  
#  
#  d0 = np.zeros(dat.shape, dtype = bool);
#  d1 = np.zeros(dat.shape, dtype = bool);
#  
#  d0[xyz[:,0], xyz[:,1], xyz[:,2]] = True;
#  d1[xyz1[:,0], xyz1[:,1], xyz1[:,2]] = True;
#  np.all(d0 == d1)
#  
#  dat2 = np.array(np.random.rand(1000, 1000, 1000) > 0, dtype = 'bool');
#  filename = 'test.npy';
#  np.save(filename, dat2)
#  
#  filename = '/disque/raid/vasculature/4X-test2/170824_IgG_2/170824_IgG_16-23-46/rank_threshold.npy'
#  
#  timer = Timer();
#  ldat = ld.load(filename, verbose = True);
#  timer.printElapsedTime('load')
#  #load: elapsed time: 0:00:04.867
#  
#  timer = Timer(); 
#  ldat2 = np.load(filename);  
#  timer.printElapsedTime('numpy')
#  #numpy: elapsed time: 0:00:27.982
#  
#  np.all(ldat == ldat2)
#  
#  timer = Timer();
#  xyz = ld.where(ldat)
#  timer.printElapsedTime('parallel')
#  #parallel: elapsed time: 0:07:25.698
#  
#  lldat = ldat.reshape(-1, order = 'A')
#  timer = Timer();
#  xyz = ld.where(lldat)
#  timer.printElapsedTime('parallel 1d')
#  #parallel 1d: elapsed time: 0:00:49.034
#  
#  timer = Timer();
#  xyz = np.where(ldat)
#  timer.printElapsedTime('numpy')
#  
#  
#  import os
#  #os.remove(filename)
#  
#  filename = './ClearMap/Test/Skeletonization/test_bin.npy';
#  timer = Timer();
#  ldat = ld.load(filename, shared = True, verbose = True);
#  timer.printElapsedTime('load')
#  
#  ld.shm.isShared(ldat);
#  
#  
#  
#  import numpy as np
#  from ClearMap.Utils.Timer import Timer;
#  import ClearMap.DataProcessing.LargeData as ld
#  reload(ld)
#  
#  filename = 'test_save.npy';
#  
#  dat = np.random.rand(100,200,100);
#  
#  ld.save(filename, dat)
#  
#  
#  dat2 = ld.load(filename)
#  
#  np.all(dat == dat2)
#  
#  os.remove(filename)
#  
#  
#    
#  import numpy as np
#  from ClearMap.Utils.Timer import Timer;
#  import ClearMap.DataProcessing.LargeData as ld
#  reload(ld)
#  
#  dat = np.zeros(100, dtype = bool);
#  dat2 = dat.copy();
#  
#  indices = np.array([5,6,7,8,13,42])  
#  
#  ld.setValue(dat, indices, True, cutoff = 0);
#  
#  dat2[indices] = True;
#  np.all(dat2 == dat)
#  
#  d = ld.take(dat, indices, cutoff = 0)
#  np.all(d)
#  
#  
#  import numpy as np
#  from ClearMap.Utils.Timer import Timer;
#  import ClearMap.DataProcessing.LargeData as ld
#  reload(ld)
#  
#  
#  pts = np.array([0,1,5,6,10,11], dtype = int);
#  
#  ld.neighbours(pts, -10)
#  
#  
#  import numpy as np
#  from ClearMap.Utils.Timer import Timer;
#  import ClearMap.DataProcessing.LargeData as ld
#  import ClearMap.ImageProcessing.Filter.StructureElement as sel;
#  reload(ld)
#  
#  dat = np.random.rand(30,40,50) > 0.5;
#  mask = sel.structureElement('Disk', (5,5,5));
#  indices = np.where(dat.reshape(-1))[0];
#  c_id = len(indices)/2;
#  c = indices[c_id];
#  xyz = np.unravel_index(c, dat.shape)
#  l = np.array(mask.shape)/2
#  r = np.array(mask.shape) - l;
#  dlo = [max(0,xx-ll) for xx,ll in zip(xyz,l)];
#  dhi = [min(xx+rr,ss) for xx,rr,ss in zip(xyz,r, dat.shape)]
#  mlo = [-min(0,xx-ll) for xx,ll in zip(xyz,l)];
#  mhi = [mm + min(0, ss-xx-rr) for xx,rr,ss,mm in zip(xyz,r, dat.shape, mask.shape)]
#  
#  nbh = dat[dlo[0]:dhi[0], dlo[1]:dhi[1], dlo[2]:dhi[2]];
#  nbhm = np.logical_and(nbh, mask[mlo[0]:mhi[0], mlo[1]:mhi[1], mlo[2]:mhi[2]] > 0);
#  nxyz = np.where(nbhm);
#  nxyz = [nn + dl for nn,dl in zip(nxyz, dlo)];
#  nbi = np.ravel_multi_index(nxyz, dat.shape);
#  
#  nbs = ld.findNeighbours(indices, c_id , dat.shape, dat.strides, mask)
#  
#  nbs.sort();
#  print np.all(nbs == nbi)
#  
#  
#  dat = np.random.rand(30,40,50) > 0.5;
#  indices = np.where(dat.reshape(-1))[0];
#  c_id = len(indices)/2;
#  c = indices[c_id];
#  xyz = np.unravel_index(c, dat.shape)
#  l = np.array([2,2,2]);
#  r = l + 1;
#  dlo = [max(0,xx-ll) for xx,ll in zip(xyz,l)];
#  dhi = [min(xx+rr,ss) for xx,rr,ss in zip(xyz, r, dat.shape)]  
#  nbh = dat[dlo[0]:dhi[0], dlo[1]:dhi[1], dlo[2]:dhi[2]];
#  nxyz = np.where(nbh);
#  nxyz = [nn + dl for nn,dl in zip(nxyz, dlo)];
#  nbi = np.ravel_multi_index(nxyz, dat.shape);
#  
#  nbs = ld.findNeighbours(indices, c_id , dat.shape, dat.strides, tuple(l))
#  
#  nbs.sort();
#  print np.all(nbs == nbi)
#  
#  print nbs
#  print nbi
#  
#  
#  import numpy as np
#  from ClearMap.Utils.Timer import Timer;
#  import ClearMap.DataProcessing.LargeData as ld
#  reload(ld)
#  
#  data = np.random.rand(100);
#  values =np.random.rand(50);
#  indices = np.arange(50);
#  ld.setArray(data, indices, values, cutoff = 1)
#  print np.all(data[:50] == values)
#  
#  import numpy as np
#  from ClearMap.Utils.Timer import Timer;
#  import ClearMap.DataProcessing.LargeData as ld
#  reload(ld)
#  
#  m = np.array([1,3,6,7,10]);
#  i = np.array([1,2,3,4,6,7,8,9]);
#  
#  o = ld.match(m,i)
#  
#  o2 = [np.where(i==l)[0][0] for l in m]
#
#
#