Example #1
0
def custom2(param, comb_degree=3):
    print(f"{dt()} :: Experiments Initialize")

    for nb_combine in range(1, comb_degree+1):
        print(f"{dt()} :: {nb_combine} sample experiments")
        param.nb_combine = nb_combine

        datasets = loader.data_loader(param, target=nb_combine)
        datasets = preprocessing.del_subject(param, datasets, target="PA")
        train, test, nb_class, nb_people = preprocessing.chosen_method(param=param, comb=nb_combine, datasets=datasets)
        deep_learning_experiment_configuration(param, train, test, [nb_class, nb_people])

        ds.save_result(param)
Example #2
0
def cropping(param):
    print(f"{dt()} :: Cropping Network Initialize")
    datasets = loader.create_loader(param)
    data_list = preprocessing.normalize_all_of_length(param, datasets)
    for i, data in enumerate(data_list):
        data[:, -2] = data[:, -2] - 1
        data_list[i] = data[data[:, -2].argsort()]

    param.nb_modal = 3
    train, test, nb_class, nb_people = preprocessing.chosen_method(param=param, comb=1, datasets=data_list)
    nb_repeat = len(train)
    for repeat in range(nb_repeat):
        model = model_compactor.model_setting(param, train[repeat], test[repeat], [nb_class, nb_people])
    print('Done?')
Example #3
0
def experiment(param, comb_degree=5):
    print(f"{dt()} :: Experiments Initialize")

    for nb_combine in [2, 4]:
        # if nb_combine != 1:
        #      continue
        print(f"{dt()} :: {nb_combine} sample experiments")
        param.nb_combine = nb_combine

        if param.model_name in model_compactor.model_info['dl']:
            datasets = loader.data_loader(param, target=nb_combine)
            train, test, nb_class, nb_people = preprocessing.chosen_method(
                param=param, comb=nb_combine, datasets=datasets)
            deep_learning_experiment_configuration(param, train, test,
                                                   [nb_class, nb_people])
            ds.save_result(param)
        elif param.model_name in model_compactor.model_info['c_dl']:
            datasets = loader.data_loader(param, target=nb_combine)
            train, test, nb_class, nb_people = preprocessing.chosen_method(
                param=param, comb=nb_combine, datasets=datasets)
            deep_learning_experiment_custom(param, train, test,
                                            [nb_class, nb_people])
            ds.save_result(param)
        elif param.model_name in model_compactor.model_info['v_dl']:
            datasets = loader.vector_loader(param)
            train, test, nb_class, nb_people = preprocessing.chosen_method(
                param=param, comb=1, datasets=datasets)
            deep_learning_experiment_vector(param, train, test,
                                            [nb_class, nb_people])
            ds.save_result(param)
        elif param.object == 'ensemble':
            datasets = loader.data_loader(param, nb_combine)
            train, test, nb_class, nb_people = preprocessing.chosen_method(
                param=param, comb=nb_combine, datasets=datasets)
            deep_learning_experiment_ensemble(param, train, test,
                                              [nb_class, nb_people])
            ds.save_result(param)
Example #4
0
def experiment(param, comb_degree=5):
    print(f"{dt()} :: Experiments Initialize")

    for nb_combine in range(1, comb_degree+1):
        print(f"{dt()} :: {nb_combine} sample experiments")
        param.nb_combine = nb_combine
        if nb_combine != 1:
            continue

        datasets = loader.data_loader(param, target=nb_combine)
        train, test, nb_class, nb_people = preprocessing.chosen_method(param=param, comb=nb_combine, datasets=datasets)
        if param.model_name in model_compactor.model_info['dl']:
            deep_learning_experiment_configuration(param, train, test, [nb_class, nb_people])
            ds.save_result(param)
        elif param.model_name in model_compactor.model_info['ml']:
            machine_learning_experiment_configuration(param, train, test, [nb_class, nb_people])
Example #5
0
def convert(param):
    print(f"{dt()} :: Convert Initialize")

    for nb_combine in range(1, 5):
        print(f"{dt()} :: {nb_combine} sample experiments")
        param.nb_combine = nb_combine
        if nb_combine != 1:
            continue

        datasets = loader.data_loader(param, target=nb_combine)
        train, test, nb_class, nb_people = preprocessing.chosen_method(
            param=param, comb=nb_combine, datasets=datasets)

        if param.method == method_select['people']:
            nb_repeat = nb_people
        elif param.method in method_select['repeat']:
            nb_repeat = 20
        elif param.method in method_select["CrossValidation"]:
            nb_repeat = param.collect["CrossValidation"] * 5
        elif param.method in method_select['specific']:
            nb_repeat = 5

        for repeat in range(nb_repeat):
            print(
                f"{dt()} :: {repeat + 1}/{nb_repeat} convert target progress")

            tartr = train[repeat]
            tarte = test[repeat]

            if param.datatype == "type":
                tartr["tag"] -= 1
                tarte["tag"] -= 1

            tr_label = np.zeros([len(tartr["people"]), 2])
            te_label = np.zeros([len(tarte["people"]), 2])

            for idx, (tr, te) in enumerate(
                    zip([tartr["people"], tartr["tag"]],
                        [tarte["people"], tarte["tag"]])):
                tr_label[:, idx] = tr
                te_label[:, idx] = te

            for idx in range(param.nb_modal):
                tartr[f"data_{idx}"] = np.hstack(
                    [tartr[f"data_{idx}"], tr_label])
                tarte[f"data_{idx}"] = np.hstack(
                    [tarte[f"data_{idx}"], te_label])

            tr_data = list()
            te_data = list()
            for idx in range(param.nb_modal):
                tr_data.append(tartr[f"data_{idx}"])
                te_data.append(tarte[f"data_{idx}"])

            train_dict = dict()
            test_dict = dict()
            if param.nb_modal == 3:
                datatype = ['pressure', 'acc', 'gyro']
                for train_target, test_target, target in zip(
                        tr_data, te_data, datatype):
                    train_dict[target] = train_target
                    test_dict[target] = test_target
            elif param.nb_modal == 7:
                datatype = ['pressure', 'acc', 'gyro']
                for train_target, test_target, target in zip(
                        tr_data, te_data, datatype):
                    train_dict[target] = train_target
                    test_dict[target] = test_target

            save_dir = '../Result/Convert'
            train_folder = 'train'
            test_folder = 'test'
            folder_name = 'matfile'
            file_name = f'{repeat}.mat'

            train_dir = None
            test_dir = None
            for idx, target in enumerate([save_dir, folder_name,
                                          train_folder]):
                if idx == 0:
                    train_dir = target
                else:
                    train_dir = os.path.join(train_dir, target)
                if os.path.exists(train_dir) is not True:
                    os.mkdir(train_dir)

            for idx, target in enumerate([save_dir, folder_name, test_folder]):
                if idx == 0:
                    test_dir = target
                else:
                    test_dir = os.path.join(test_dir, target)
                if os.path.exists(test_dir) is not True:
                    os.mkdir(test_dir)

            savemat(os.path.join(train_dir, file_name), train_dict)
            savemat(os.path.join(test_dir, file_name), test_dict)