from CollectiveMotion import CollectiveMotionClass as CMClass import numpy as np import pandas as pd import matplotlib.pyplot as plt cm = CMClass() blocks = 2**0 block_size = 2**9 n = blocks * block_size timestep = 0.05 ra = 0.8 rb = 0.2 re = 0.5 r0 = 1.0 b = 5.0 J = 0.1 def update(): global pos, vel, K n0 = np.random.randn(n, 3) n0 *= 1.0 / np.linalg.norm(n0, axis=1).reshape(-1, 1) n0 = n0.astype(np.float32) pos, vel = cm.step(pos, vel, n, timestep, ra, rb, re, r0, b, J, blocks, block_size) pos -= np.mean(pos, axis=0)
from CollectiveMotion import CollectiveMotionClass as CMClass from CollectiveMotionFunctions import fisher import numpy as np import pandas as pd import matplotlib.pyplot as plt nc = 20 cm = CMClass() cm.set_nc(20) blocks = 2**0 block_size = 2**9 n = blocks * block_size timestep = 0.05 ra = 0.8 rb = 0.2 re = 0.5 r0 = 1.0 b = 5.0 J = 0.1 def update(): global pos, vel, K n0 = np.random.randn(n,3) n0 *= 1.0 / np.linalg.norm(n0, axis=1).reshape(-1,1) n0 = n0.astype(np.float32) pos, vel = cm.step(pos, vel, n, timestep,
from CollectiveMotion import CollectiveMotionClass as CMClass from CollectiveMotionFunctions import get_probability_i import numpy as np import pandas as pd import matplotlib.pyplot as plt nc = 20 cm = CMClass() cm.set_nc(nc) blocks = 2**0 block_size = 2**9 n = blocks * block_size timestep = 0.05 ra = 0.8 rb = 0.2 re = 0.5 r0 = 1.0 b = 5.0 J = 0.1 def update(): global pos, vel, K n0 = np.random.randn(n,3) n0 *= 1.0 / np.linalg.norm(n0, axis=1).reshape(-1,1) n0 = n0.astype(np.float32) pos, vel = cm.step(pos, vel, n, timestep,