model_file = 'model.pkl' output_predictions_file = 'predictions.txt' X2 = pd.read_csv('Data/Test/Test_Combine.csv', usecols=['T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y2 = pd.read_csv('Data/Test/Test_Combine.csv', usecols=['PM 2.5']) X2 = X2.values Y2 = Y2.values net = pickle.load(open(model_file, 'rb')) y_test_dummy = np.zeros(Y2.shape) input_size = X2.shape[1] target_size = X2.shape[1] ds = SDS(input_size, target_size) ds.setField('input', X2) ds.setField('target', y_test_dummy) p = net.activateOnDataset(ds) mse = MSE(Y2, p) rmse = sqrt(mse) print("testing RMSE:", rmse) print("testing MSE: ", mse) main(Y2, p) np.savetxt(output_predictions_file, p, fmt='%.6f')
import numpy as np import pandas as pd from sklearn import linear_model from sklearn import metrics from Confuse import main X = pd.read_csv('Train/Train_Combine.csv', usecols=['T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) y = pd.read_csv('Train/Train_Combine.csv', usecols=['PM 2.5']) X = np.array(X) y = np.array(y) lin = linear_model.LinearRegression() lin.fit(X, y) X2 = pd.read_csv('Test/Test_Combine.csv', usecols=['T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y2 = pd.read_csv('Test/Test_Combine.csv', usecols=['PM 2.5']) X2 = X2.values Y2 = Y2.values preds = lin.predict(X2) err = metrics.mean_absolute_error(Y2, preds) * 100 print("Mean Absolute Error: %f" % err) main(Y2, preds)
from sklearn.ensemble import RandomForestRegressor import pandas as pd import numpy as np from sklearn import metrics from Confuse import main X = pd.read_csv('Train/Train_Combine.csv', usecols=['T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y = pd.read_csv('Train/Train_Combine.csv', usecols=['PM 2.5']) X = X.values Y = Y.values X2 = pd.read_csv('Test/Test_Combine.csv', usecols=['T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y2 = pd.read_csv('Test/Test_Combine.csv', usecols=['PM 2.5']) X2 = X2.values Y2 = Y2.values abc = RandomForestRegressor(n_estimators=10) abc.fit(X, Y) err = metrics.mean_absolute_error(Y2, abc.predict(X2)) * 100 print("Mean Absolute Error: %f" % err) main(Y2, abc.predict(X2))
model_file = 'model.pkl' output_predictions_file = 'predictions.txt' X2 = pd.read_csv('Test/Test_Combine.csv', usecols=[ 'T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y2 = pd.read_csv('Test/Test_Combine.csv', usecols=['PM 2.5']) X2 = X2.values Y2 = Y2.values net = pickle.load(open(model_file, 'rb')) y_test_dummy = np.zeros(Y2.shape) input_size = X2.shape[1] target_size = X2.shape[1] ds = SDS(input_size, target_size) ds.setField('input', X2) ds.setField('target', y_test_dummy) p = net.activateOnDataset(ds) mse = MSE(Y2, p) rmse = sqrt(mse) print "testing RMSE:", rmse print "testing MSE: ", mse main(Y2, p) np.savetxt(output_predictions_file, p, fmt='%.6f')
X = X.values Y = Y.values X2 = pd.read_csv('Data/Test/Test_Combine.csv', usecols=[ 'T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y2 = pd.read_csv('Data/Test/Test_Combine.csv', usecols=['PM 2.5']) X2 = X2.values Y2 = Y2.values regr_1 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, Y) y_1 = regr_1.predict(X2) print ("Mean Absolute Error: ", mean_absolute_error(Y2, y_1)) main(Y2, y_1) #plt.figure() #plt.scatter(Y, Y, c="k", label="data") #plt.plot(Y2, y_1, c="g", label="max_depth=2", linewidth=2) #plt.plot(X_test, y_2, c="r", label="max_depth=5", linewidth=2) #plt.xlabel("data") #plt.ylabel("target") #plt.title("Decision Tree Regression") #plt.legend() #plt.show()
from sklearn.svm import SVR import pandas as pd from sklearn import metrics from Confuse import main X = pd.read_csv('Train/Train_Combine.csv', usecols=[ 'T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y = pd.read_csv('Train/Train_Combine.csv', usecols=['PM 2.5']) X = X.values Y = Y.values X2 = pd.read_csv('Test/Test_Combine.csv', usecols=[ 'T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y2 = pd.read_csv('Test/Test_Combine.csv', usecols=['PM 2.5']) X2 = X2.values Y2 = Y2.values abc = SVR(kernel='rbf') abc.fit(X, Y) err = metrics.mean_absolute_error(Y2, abc.predict(X2)) * 100 print ("Mean Absolute Error: %f" % err) # evaluate performance main(Y2, abc.predict(X2))
model.add(Dense(10, input_dim=8, init='uniform')) model.add(Activation('tanh')) model.add(Dense(10, input_dim=10, init='uniform')) model.add(Activation('tanh')) model.add(Dense(1, input_dim=10, init='uniform')) model.add(Activation('tanh')) sgd = SGD(lr=0.1, decay=1e-3, momentum=0.5, nesterov=True) model.compile(loss='mse', optimizer=sgd) model.fit(X, Y, nb_epoch=100, batch_size=1, show_accuracy=False) score = model.evaluate(X2, Y2, batch_size=1) preds = model.predict(X2, batch_size=1, verbose=0) main(Y2, preds) # plt.plot(xrange(0, 441), preds, label='Observed') # plt.plot(xrange(0, 441), Y2, label='Expected') # plt.xlabel('Data Points') # plt.ylabel('PM 2.5') # plt.legend(loc='upper right') # plt.show() A = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['PM 2.5']) B = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['T']) C = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['TM']) D = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['Tm']) E = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['SLP']) F = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['H']) G = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['VV']) H = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['VM'])
from sklearn.neighbors import KNeighborsRegressor, NearestNeighbors import pandas as pd from sklearn import metrics from Confuse import main X = pd.read_csv('Train/Train_Combine.csv', usecols=[ 'T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y = pd.read_csv('Train/Train_Combine.csv', usecols=['PM 2.5']) X = X.values Y = Y.values X2 = pd.read_csv('Test/Test_Combine.csv', usecols=[ 'T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y2 = pd.read_csv('Test/Test_Combine.csv', usecols=['PM 2.5']) X2 = X2.values Y2 = Y2.values knn = KNeighborsRegressor( n_neighbors=10, algorithm='auto', leaf_size=30, weights='uniform') knn.fit(X, Y) nn = NearestNeighbors(n_neighbors=10, algorithm='auto', leaf_size=30) nn.fit(X, Y) err = metrics.mean_absolute_error(Y2, knn.predict(X2)) * 100 print ("Mean Absolute Error: %f" % err) main(Y2, knn.predict(X2))
from sklearn.neighbors import KNeighborsRegressor, NearestNeighbors import pandas as pd from sklearn import metrics from Confuse import main X = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['PM 2.5']) X = X.values Y = Y.values X2 = pd.read_csv('Data/Test/Test_Combine.csv', usecols=['T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM']) Y2 = pd.read_csv('Data/Test/Test_Combine.csv', usecols=['PM 2.5']) X2 = X2.values Y2 = Y2.values knn = KNeighborsRegressor(n_neighbors=10, algorithm='auto', leaf_size=30, weights='uniform') knn.fit(X, Y) nn = NearestNeighbors(n_neighbors=10, algorithm='auto', leaf_size=30) nn.fit(X, Y) err = metrics.mean_absolute_error(Y2, knn.predict(X2)) * 100 print("Mean Absolute Error: %f" % err) main(Y2, knn.predict(X2))