Example #1
0
    def step(self, obs):
        super(MoveToBeacon, self).step(obs)

        if MoveToBeacon.loaded == False:
            self.loadK("8Dense-10-epochs-2-batches-3000-dataSetSize-98%")
            MoveToBeacon.loaded = True
        input = obs.observation.feature_minimap[5]
        for x in input:
                output = ""
                for i in x:
                    output+=str(i)
                    output+=""
                print(output)
        print("\n")        
        #If maring is selected, use DNN
        #print("Single: " + (str)(len(obs.observation.single_select)))
        #print("Multi: " + (str)(len(obs.observation.multi_select)))
        if self.unit_type_is_selected(obs, units.Terran.Marine):
            if self.can_do(obs, actions.FUNCTIONS.Attack_screen.id):

                newInput = self.stencil(obs.observation.feature_minimap[3], obs.observation.feature_minimap[5])

                #for x in stencil:
                #        output = ""
                #        for i in x:
                #            output+=str(i)
                #            output+=""
                #        print(output)
                #print("\n")
                #for x in input:
                #        output = ""
                #        for i in x:
                #            output+=str(i)
                #            output+=""
                #        print(output)
                #print("\n")
                #for x in newInput:
                #        output = ""
                #        for i in x:
                #            output+=str(i)
                #            output+=" "
                #        print(output)
                #print("\n")

                newInput = numpy.expand_dims(newInput, axis=2)
                newInput = newInput.reshape([-1,const.InputSize(),const.InputSize(),1])
                prediction = self.model.predict(newInput)
                outputx = prediction[0][0] * const.ScreenSize().x
                outputy = prediction[0][1] * const.ScreenSize().y
                #print(('Network Prediction vs Optimum: ({},{}) ({},{})'.format(int(outputx),int(outputy),beacon.x,beacon.y)), end='\r')
                return actions.FUNCTIONS.Attack_screen("now", (outputx,outputy))
        #Select Marine
        else: 
            marine = self.get_units_by_type(obs, units.Terran.Marine)
            if len(marine) > 0: 
                return actions.FUNCTIONS.select_point('select_all_type', (marine[0].x,
                                                                    marine[0].y))

        #features.MinimapFeatures.
        return actions.FUNCTIONS.no_op()
Example #2
0
def use_ability(x, y, type, available):
    act = [get_closest_ability(type, available)]
    if act == 0:
        return [0]
    act.append([int(0)])
    act.append([x * const.ScreenSize().x, y * const.ScreenSize().x])
    return act
def position_translation(position, value):
    #Action
    if (position == 0):
        #Select point
        if (value in [2]):
            return [0, 1]
        #Select rect
        # elif (value in [3]):
        #     return [1, 1]
        #Smart screen
        elif (value in [451, 452]):
            return [1, 1]
        #Attack screen
        elif (value in [13, 17, 12, 14, 16]):
            return [2, 1]
        #Hold pos
        # elif (value in [274,453]):
        #     return [4, 1]
        #Select army
        elif (value in [7]):
            return [3, 1]
        #Use ability
        else:
            return [4, 1]
    #Stack action
    if (position == 1):
        return [5, value[0] / 4]
    #Coordinates
    if (position >= 2):
        return [position + 4, value / const.ScreenSize().x]
    print("Something went wrong in position_translation")
    return 0
    def step(self, obs):
        super(Overmind, self).step(obs)

        if (not self.loaded):
            self.loaded = True
            self.homeHatch = self.get_buildings(obs, units.Zerg.Hatchery)[0]
            self.model = ks.models.load_model(
                "C:\\Users\\Charlie\Models\\Conv2D-noobs - 1st Gen")
            return FUNCTIONS.move_camera(
                [const.MiniMapSize().x / 2,
                 const.MiniMapSize().y / 2])

        # If nothing to macro
        # if obs.observation.player['food_army'] < 10:
        #     function = self.macro(obs)
        #     print(function)
        #     return function

        T = Translator()

        tFeatureLayers = T.translate_feature_layers(
            T.crop_feature_layers(obs.observation.feature_screen[0],
                                  obs.observation.feature_screen,
                                  const.ScreenSize().x,
                                  const.ScreenSize().y))

        featureLayers = (np.moveaxis((np.array(tFeatureLayers)), 0,
                                     2)).reshape(-1,
                                                 const.ScreenSize().x,
                                                 const.ScreenSize().y, 12)
        prediction = self.model.predict(featureLayers)[0]
        action = translate(obs, prediction)
        print(action[0])
        for pred in prediction:
            print(pred)
        if (action[0] in obs.observation.available_actions):
            return actions.FunctionCall(action[0], action[1:])
        else:
            print("No-op, Switching to Macro:")
            function = self.macro(obs)
            print(function)
            return function
Example #5
0
def main(unused_argv):
    #build_knet()
    #build_transformer()
    #check_replay()
    #build_LSTM()
    # Dynamically grow the memory used on GPU
    # config = tf.ConfigProto()
    # config.gpu_options.allow_growth = True
    # sess = tf.Session(config=config)
    # set_session(sess)
    # for i in range(0, 100):
    train_LSTM()

    #transform_replay
    #Agent
    agent = Overmind()
    try:
        while True:
            with sc2_env.SC2Env(
                    False,
                    map_name='KingsCove',
                    players=[
                        sc2_env.Agent(sc2_env.Race.zerg),
                        sc2_env.Bot(sc2_env.Race.terran,
                                    sc2_env.Difficulty.very_easy)
                    ],
                    agent_interface_format=features.AgentInterfaceFormat(
                        #What resolution the player sees the world at
                        feature_dimensions=features.Dimensions(
                            screen=const.ScreenSize(),
                            minimap=const.MiniMapSize()),
                        #More indepth unit information
                        use_raw_units=True,
                        use_camera_position=True,
                        #Increase camera size to encompass whole map
                        camera_width_world_units=round(const.WorldSize().x)),
                    #Steps default is 8 per frame (168APM) (16 = 1 second)
                    step_mul=16,  # 175,
                    #Max steps per game (0 is infinite)
                    game_steps_per_episode=0,
                    #visualize pysc2 input layers
                    visualize=False,
                    #Play-back-time
                    realtime=False,
                    #Fog of War
                    #disable_fog=False,
            ) as env:
                run_loop.run_loop([agent], env)
    except KeyboardInterrupt:
        pass
Example #6
0
def attack_point(x, y):
    act = [12]
    act.append([int(0)])
    act.append([x * const.ScreenSize().x, y * const.ScreenSize().x])
    return act
Example #7
0
def smart_screen(x, y):
    act = [451]
    act.append([int(0)])
    act.append([x * const.ScreenSize().x, y * const.ScreenSize().x])
    return act
Example #8
0
def select_rect(x1, y1, x2, y2):
    act = [3]
    act.append([int(0)])
    act.append([x1 * const.ScreenSize().x, y1 * const.ScreenSize().x])
    act.append([x2 * const.ScreenSize().x, y2 * const.ScreenSize().x])
    return act
Example #9
0
def select_point(type, x, y):
    act = [2]
    act.append([int(type)])
    act.append([x * const.ScreenSize().x, y * const.ScreenSize().x])
    return act
Example #10
0
    def step(self, obs):
        super(GenerateMoveToBeaconTestData, self).step(obs)


       # Extract file code
       # with open ('training_data/0.csv') as csv_file:
       #     reader = csv.reader(csv_file)
       #     count = 0
       #     for row in reader:
       #         if count == 0:
       #             GenerateMoveToBeaconTestData.packagedInput = row
       #         if count == 2:
       #             GenerateMoveToBeaconTestData.packagedOutput = row
       #         count+=1


        #If previous action was successful, record as training data
        if obs.reward > 0:
            #counter = 0
            #output = ""
            #for x in GenerateMoveToBeaconTestData.packagedInput:
            #    output+=str(x)
            #    output+=" "
            #    counter+=1 
            #    if (counter == const.InputSize()):
            #        print(output)
            #        output = ""
            #        counter = 0
            #print(GenerateMoveToBeaconTestData.packagedOutput)
            fileName = 'raw_training_data/' + str(self.packageCounter) + '.csv'
            with open(fileName, mode='w', newline='') as file:
                writer = csv.writer(file)
                writer.writerows(self.packagedInput)
                writer.writerow(self.packagedOutput)
            self.packageCounter+=1
            #if (self.packageCounter == 3000):
            #    self.packageCounter = 4000


        newinput = obs.observation.feature_screen[6]


        #stencil = obs.observation.feature_minimap[3]

        ##24x24 is refined input data size
        ##Use camera stencil to grab relevent data   
        #newinput = numpy.zeros((const.InputSize(),const.InputSize()),int)
        #counterx = 0
        #countery = 0
        #for numy, y in enumerate(stencil):
        #    for numx, x in enumerate(y): 
        #        if (x == 1):
        #            newinput[countery][counterx] = input[numy][numx]
        #            counterx+=1
        #        if (counterx == const.InputSize()):
        #            countery+=1
        #            counterx=0

        for unit in obs.observation.feature_units:
            if(unit.unit_type == 317):
                beacon = unit

        
        #for x in newinput:
        #    output = ""
        #    for i in x:
        #        output+=str(i)
        #        output+=""
        #    print(output)
        #print("\n")

        #Screen is not 84x84 but ~84x60 but 84x84 for simplicity
        outputx = beacon.x #random.randint(0,const.ScreenSize())
        outputy = beacon.y #random.randint(0,const.ScreenSize())

        self.packagedInput = newinput
        #/84 to get a number between 0 and 1 as outputs for DNN
        self.packagedOutput = [float(round(Decimal(outputx/const.ScreenSize().x),2)),
                                                       float(round(Decimal(outputy/const.ScreenSize().y),2))]
        if self.unit_type_is_selected(obs, units.Terran.Marine):
            if self.can_do(obs, actions.FUNCTIONS.Attack_screen.id):
                return actions.FUNCTIONS.Attack_screen("now", (outputx,outputy))
        #Select Marine
        else: 
            marine = self.get_units_by_type(obs, units.Terran.Marine)
            if len(marine) > 0: 
                return actions.FUNCTIONS.select_point('select_all_type', (marine[0].x,
                                                                    marine[0].y))


        #features.MinimapFeatures.
        return actions.FUNCTIONS.no_op()
    def step(self, obs):
        super(DefeatEnemies, self).step(obs)

        if DefeatEnemies.loaded == False:
            self.loadK("LSTM84")
            DefeatEnemies.loaded = True

        if self.unit_type_is_selected(obs, units.Terran.Marine):
            if self.can_do(obs, actions.FUNCTIONS.Attack_screen.id):

                #84x84 Detailed
                #Things to be known:
                #Height_map(0) visibility(1) creep(2) Player_relative(5) Unit_type(6) selected(7) hit_points(8) unit_density(11) 
                input = obs.observation.feature_screen[6]
                #features.Dimensions.screen
                #31x31 Simplified
                #input = obs.observation.feature_screen[5]
                #stencil = obs.observation.feature_screen[3]
                #newInput = numpy.zeros((const.InputSize(),const.InputSize()),int)
                #counterx = 0
                #countery = 0
                #for numy, y in enumerate(stencil):
                #    for numx, x in enumerate(y): 
                #        if (x == 1):
                #            newInput[countery][counterx] = input[numy][numx]
                #            counterx+=1
                #        if (counterx == const.InputSize()):
                #            countery+=1
                #            counterx=0
                obs.observation
                for x in obs.observation.feature_screen[6]:
                        output = ""
                        for i in x:
                            output+=str(i)
                            output+=""
                        print(output)
                print("\n")

                newInput = numpy.expand_dims(input, axis=2)
                newInput = newInput.reshape([-1,const.InputSize(),const.InputSize(),1])


                #self.model.fit(TD[0], TD[1], 
                #batch_size=batch_size,
                #epochs=epochs,
                #validation_split=0.1, 
                #shuffle=False, verbose=verbose)
                prediction = self.model.predict(newInput)
                #for marines in obs.observation.multi_select:
                #    obs.observation.multi_select[0]
                #    prediction = self.model.predict(newInput)


                outputx = prediction[0][0] * const.ScreenSize().x
                outputy = prediction[0][1] * const.ScreenSize().y
            #return actions.FunctionCall(function_id, args)

                return actions.FUNCTIONS.Attack_screen("now", (outputx,outputy))
        else: 
            marine = self.get_units_by_type(obs, units.Terran.Marine)
            if len(marine) > 0: 
                return actions.FUNCTIONS.select_point('select_all_type', (marine[0].x,
                                                                    marine[0].y))