Example #1
0
        self.Tmax = Tmax
        self.Pmax = Pmax
        self.has_melting_line = has_melting_line
        self.Tc = Tc
        self.Pc = Pc
        self.Tt = Tt
        self.omega = omega
        self.HEOS = HEOS


# Store the propoerties in a dict of CP_fluid instances
coolprop_fluids = {}
if has_CoolProp:
    for CASRN in coolprop_dict:
        HEOS = AbstractState("HEOS", CASRN)
        coolprop_fluids[CASRN] = CP_fluid(Tmin=HEOS.Tmin(), Tmax=HEOS.Tmax(), Pmax=HEOS.pmax(),
                       has_melting_line=HEOS.has_melting_line(), Tc=HEOS.T_critical(), Pc=HEOS.p_critical(),
                       Tt=HEOS.Ttriple(), omega=HEOS.acentric_factor(), HEOS=HEOS)


def CoolProp_T_dependent_property(T, CASRN, prop, phase):
    r'''Calculates a property of a chemical in either the liquid or gas phase
    as a function of temperature only. This means that the property is
    either at 1 atm or along the saturation curve.

    Parameters
    ----------
        T : float
            Temperature of the fluid [K]
        CASRN : str
            CAS number of the fluid
Example #2
0
        self.Tc = Tc
        self.Pc = Pc
        self.Tt = Tt
        self.omega = omega
        self.HEOS = HEOS


# Store the propoerties in a dict of CP_fluid instances
coolprop_fluids = {}
if has_CoolProp:
    for CASRN in coolprop_dict:
        HEOS = AbstractState("HEOS", CASRN)
        coolprop_fluids[CASRN] = CP_fluid(
            Tmin=HEOS.Tmin(),
            Tmax=HEOS.Tmax(),
            Pmax=HEOS.pmax(),
            has_melting_line=HEOS.has_melting_line(),
            Tc=HEOS.T_critical(),
            Pc=HEOS.p_critical(),
            Tt=HEOS.Ttriple(),
            omega=HEOS.acentric_factor(),
            HEOS=HEOS)


def CoolProp_T_dependent_property(T, CASRN, prop, phase):
    r'''Calculates a property of a chemical in either the liquid or gas phase
    as a function of temperature only. This means that the property is
    either at 1 atm or along the saturation curve.

    Parameters
    ----------
Example #3
0
class Fluid:
    """Represents a fluid."""
    def __init__(self, name: str, eos: str = 'HEOS'):
        """Initiate a Fluid instance.

        :param ID: id of fluid
        """

        self.name = name
        self.eos = eos.upper()
        self.state = AbstractState(self.eos, self.name)

        if self.state.name() not in ["NitrousOxide"]:
            raise NotImplementedError(
                f'{self.state.name()} is not supported currently')
        self.Tmax = 309.5  # self.state.Tmax()
        self.Tmin = 182.23  # self.state.Tmin()
        self.pmax = self.state.pmax()
        self.pmin = 0

    def copy(self):
        fluid = Fluid(self.name, self.eos)
        fluid.set_state(P=self.state.p(), T=self.state.T())
        return fluid

    def set_state(self,
                  D: float = None,
                  P: float = None,
                  T: float = None,
                  Q: float = None,
                  H: float = None,
                  S: float = None,
                  U: float = None):

        args_present = {
            'D': D is not None,
            'P': P is not None,
            'T': T is not None,
            'Q': Q is not None,
            'H': H is not None,
            'S': S is not None,
            'U': U is not None
        }

        if sum(args_present.values()) != 2:
            raise ValueError(
                f'Must have exactly 2 arguments: {sum(args_present.values())} provided'
            )
        args = []
        if args_present['D']:
            if args_present['P']:
                args = CP.DmassP_INPUTS, D, P
            elif args_present['T']:
                args = CP.DmassT_INPUTS, D, T
            elif args_present['Q']:
                args = CP.DmassQ_INPUTS, D, Q
            elif args_present['H']:
                args = CP.DmassHmass_INPUTS, D, H
            elif args_present['S']:
                args = CP.DmassSmass_INPUTS, D, S
            elif args_present['U']:
                args = CP.DmassUmass_INPUTS, D, U
        elif args_present['P']:
            if args_present['T']:
                args = CP.PT_INPUTS, P, T
            elif args_present['Q']:
                args = CP.PQ_INPUTS, P, Q
            elif args_present['H']:
                args = CP.HmassP_INPUTS, H, P
            elif args_present['S']:
                args = CP.PSmass_INPUTS, P, S
            elif args_present['U']:
                args = CP.PUmass_INPUTS, P, U
        elif args_present['T']:
            if args_present['Q']:
                args = CP.QT_INPUTS, Q, T
            elif args_present['H']:
                args = CP.HmassT_INPUTS, H, T
            elif args_present['S']:
                args = CP.SmassT_INPUTS, S, T
            elif args_present['U']:
                args = CP.TUmass_INPUTS, T, U
        elif args_present['Q']:
            if args_present['H']:
                args = CP.HmassQ_INPUTS, H, Q
            elif args_present['S']:
                args = CP.QSmass_INPUTS, Q, S
            elif args_present['U']:
                raise ValueError('Invalid combination: Q and U')
        elif args_present['H']:
            if args_present['S']:
                args = CP.HmassSmass_INPUTS, H, S
            elif args_present['U']:
                raise ValueError('Invalid combination: H and U')
        elif args_present['S'] and args_present['U']:
            args = CP.SmassUmass_INPUTS, S, U
        else:
            raise ValueError('Invalid combination')

        try:
            self.state.update(*args)
        except ValueError:
            pass

    def Vf(self, S: float):
        x = self.chi()
        return 1 / (1 /
                    (1 + S * ((1 - x) / x) * self.rhog([self.state.T()])[0] /
                     self.rhol([self.state.T()])[0]))

    def chi(self):
        x = self.state.Q()
        if x >= 0:
            return x
        if self.state.rhomass() > self.rhol([self.state.T()])[0]:
            return 0
        else:
            return 1

    def viscosityl(self, T):
        b1 = 1.6089
        b2 = 2.0439
        b3 = 5.24
        b4 = 0.0293423
        theta = (self.state.T_critical() - b3) / (T - b3)
        return b4 * np.exp(b1 * (theta - 1)**(1 / 3) + b2 *
                           (theta - 1)**(4 / 3))

    def viscosityg(self, T):
        b1 = 3.3281
        b2 = -1.18237
        b3 = -0.055155
        Tr = T / self.state.T_critical()
        return 0.001 * np.exp(b1 + b2 * (1 / Tr - 1)**(1 / 3) + b3 *
                              (1 / Tr - 1)**(4 / 3)) if (
                                  self.Tmin < T < self.Tmax) else None

    def viscosity(self):
        T = self.state.T()
        mug = self.viscosityg(T)
        mul = self.viscosityl(T)
        x = self.chi()
        rho = self.state.rhomass()
        rhol = self.rhol([T])[0]
        rhog = self.rhog([T])[0]
        return mug * x * rho / rhog + mul * (1 - x) * rho / rhol

    def dvg_dP_saturation(self):
        dP = 0.002
        rho1 = PropsSI('D', 'P', self.state.p() + dP / 2, 'Q', 1, self.name)
        rho0 = PropsSI('D', 'P', self.state.p() - dP / 2, 'Q', 1, self.name)
        dvg = 1 / rho1 - 1 / rho0
        return dvg / dP

    def rhol(self, T: Iterable):
        return [
            PropsSI('D', 'T', t, 'Q', 0, self.eos + "::" + self.name)
            for t in T
        ]

    def rhog(self, T: Iterable):
        return [
            PropsSI('D', 'T', t, 'Q', 1, self.eos + "::" + self.name)
            for t in T
        ]

    def psat(self, T: Iterable):
        return [
            PropsSI('P', 'Q', 0.5, 'T', t, self.eos + "::" + self.name) if
            (self.Tmin < t < self.Tmax) else None for t in T
        ]

    def tsat(self, P: Iterable):
        return [
            PropsSI('T', 'P', P, 'Q', 0.5, self.eos + "::" + self.name) if
            (self.pmin < p < self.pmax) else None for p in P
        ]

    def hl(self, T: Iterable):
        return [
            PropsSI('H', 'T', t, 'Q', 0, self.eos + "::" + self.name) if
            (self.Tmin < t < self.Tmax) else None for t in T
        ]

    def hg(self, T: Iterable):
        return [
            PropsSI('H', 'T', t, 'Q', 1, self.eos + "::" + self.name) if
            (self.Tmin < t < self.Tmax) else None for t in T
        ]

    def sl(self, T: Iterable):
        return [
            PropsSI('S', 'T', t, 'Q', 0, self.eos + "::" + self.name) if
            (self.Tmin < t < self.Tmax) else None for t in T
        ]

    def sg(self, T: Iterable):
        return [
            PropsSI('S', 'T', t, 'Q', 1, self.eos + "::" + self.name) if
            (self.Tmin < t < self.Tmax) else None for t in T
        ]

    def __repr__(self):
        return f'Fluid({self.name}: p={self.state.p() / 100000:.1f}bar, t={self.state.T():.1f}K)'
Example #4
0
        self.Tc = Tc
        self.Pc = Pc
        self.Tt = Tt
        self.omega = omega
        self.HEOS = HEOS


# Store the propoerties in a dict of CP_fluid instances
coolprop_fluids = {}
if has_CoolProp:
    for CASRN in coolprop_dict:
        HEOS = AbstractState("HEOS", CASRN)
        coolprop_fluids[CASRN] = CP_fluid(
            Tmin=HEOS.Tmin(),
            Tmax=HEOS.Tmax(),
            Pmax=HEOS.pmax(),
            has_melting_line=HEOS.has_melting_line(),
            Tc=HEOS.T_critical(),
            Pc=HEOS.p_critical(),
            Tt=HEOS.Ttriple(),
            omega=HEOS.acentric_factor(),
            HEOS=HEOS)


class MultiCheb1D(object):
    '''Simple class to store set of coefficients for multiple chebshev 
    approximations and perform calculations from them.
    '''
    def __init__(self, points, coeffs):
        self.points = points
        self.coeffs = coeffs
Example #5
0
    def __init__(self, symbol="N2", T=530.0, P=1000.0, child=1):
        '''Init generic Fluid'''

        self.symbol = symbol.upper()

        # http://www.coolprop.org/_static/doxygen/html/class_cool_prop_1_1_abstract_state.html
        AS = AbstractState("HEOS", self.symbol)
        self.AS = AS

        self.name = AS.name()
        self.T = T
        self.P = P
        self.child = child

        Tsi = TSI_fromEng(T)
        Psi = PSI_fromEng(P)
        AS.update(CP.PT_INPUTS, Psi, Tsi)

        self.WtMol = AS.molar_mass() * 1000.0
        self.Tc = Teng_fromSI(AS.T_critical())
        self.Pc = Peng_fromSI(AS.p_critical())
        self.Dc = Deng_fromSI(AS.rhomass_critical())
        self.Ttriple = Teng_fromSI(AS.Ttriple())
        try:
            self.Tfreeze = Teng_fromSI(AS.T_freeze())
        except:
            self.Tfreeze = self.Ttriple

        self.Tmin = Teng_fromSI(AS.Tmin())
        self.Tmax = Teng_fromSI(AS.Tmax())
        #self.Pmin = Peng_fromSI( AS.pmin() ) # missing from AbstractState
        self.Pmax = Peng_fromSI(AS.pmax())

        dcIdeal = self.Pc * self.WtMol / self.Tc / 10.729
        self.Zc = dcIdeal / self.Dc

        try:
            TnbpSI = PropsSI("T", "P", 101325, "Q", Q_LIQUID, self.symbol)
            self.good_nbp = True
            self.Tnbp = Teng_fromSI(TnbpSI)
        except:
            #print('WARNING... "%s" failed Normal Boiling Point Calculation.'%self.symbol)
            Ttriple = PropsSI(self.symbol, 'Ttriple')
            #print('    Using Triple Point = %g degK as Tref'%Ttriple)
            self.good_nbp = False
            self.Tnbp = 'N/A'

        if self.good_nbp:
            if self.Tnbp < 536.67:
                self.Tref = self.Tnbp  # if NBP is low, use NBP as ref
            else:
                self.Tref = 536.67  # 536.67R = (SATP, Standard Ambient T P) = 77F, 25C
        else:
            self.Tref = Teng_fromSI(Ttriple) + 0.1
        self.Pref = 14.7

        #print( 'About to call setTP #1 with Tref, Pref=',self.Tref,self.Pref )
        self.setTP(self.Tref, self.Pref)
        #print( 'Back from call setTP')
        self.Href = self.H
        #print( 'About to call setTP #2')
        self.setTP(T, P)
        #print( 'Back from call setTP')

        if child == 1:
            self.dup = EC_Fluid(symbol=self.symbol,
                                T=self.T,
                                P=self.P,
                                child=0)

        self.calcdFreezePt = 0