Example #1
0
def GAIN_main(args, save_path=''):
    # parse args
    args.device = torch.device(
        'cuda' if torch.cuda.is_available() and args.gpu != -1 else 'cpu')

    data_dim = len(args.select_dim)  # 真实数据维度,即生成器输出
    input_dim = args.input_dim  # 输入随机向量维度
    G_H_Dim = args.G_hidden_dim  # 设置G隐藏层的网络单元数量
    D_H_Dim = args.G_hidden_dim  # 设置D隐藏层的网络单元数量

    # 选择的站点
    stations = args.selected_stations

    # 载入数据并进行构造
    # 载入所有选定站点的数据集
    all_station_datasets = get_saved_datasets(args)
    # all_station_datasets = get_saved_datasets_vall(args)

    # 所有参与方进行独立的本地训练
    print('Start independent training!\n')
    # 用于记录indpendent local usr测试集结果
    num_p = len(args.selected_stations)
    num_d = args.num_d
    for p, d, dataset, station in zip(range(num_p), num_d,
                                      all_station_datasets, stations):
        # 建立GAIN model
        # 新建生成器网络G
        G = Generator(input_dim, G_H_Dim, data_dim).to(args.device)
        # 新建判别器网络D
        D = Discriminator(data_dim, D_H_Dim).to(args.device)
        print('Generater network :\n', G)
        print('Discriminator network :\n', D)

        G.apply(weights_init)
        D.apply(weights_init)

        station_name = station + '{}{}'.format(p, d)
        local = LocalUpdate(args=args)
        local_g = local.independent_training(G, D, dataset, station_name,
                                             save_path)

        # 清除之前独立学习的主循环所占用的显存空间
        torch.cuda.empty_cache()
    plt.cla()  # 清除之前绘图
    plt.close()
Example #2
0
        for ind in indicator_list:
            test_result_save_path = result_save_file + ind + '/'
            mkdir(test_result_save_path)

        for i in range(cross_validation_sets_num):
            print('============= Start training at datasets {} =============='.
                  format(i))
            # 用于统计各种指标,建立相对应的文件夹
            # result_save_file = './{}/'.format(results_saved_file) + exp_name + '/datasets_{}/'.format(i)
            # plots_file = './plot_results/' + exp_name + '/datasets_{}/'.format(i)

            # 当前数据集
            args.dataset_path = './constructed_datasets/{}/{}/'.format(
                dataset_number, i)
            # 载入数据
            station_datasets = get_saved_datasets(args)

            rmse_on_test_results = []
            d2_on_test_results = []
            r2_on_test_results = []
            all_rmse_on_test_results = []
            for dataset, station in zip(station_datasets,
                                        args.selected_stations):
                r, rmse, d2, r2, all_rmse = impute_em(
                    dataset,
                    result_save_file,
                )
                impute_r = r['X_imputed']
                source_x = r['X']
                rmse_on_test_results.append(rmse)
                d2_on_test_results.append(d2)
Example #3
0
def gain_test_exp(args, save_path='', exp_num=None):

    if args.gan_categories == 'wGAN':
        from WAGIN_model import Generator, Discriminator
    else:
        from GAIN_model import Generator, Discriminator

    # parse args
    # args = args_parser()
    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    data_dim = len(args.select_dim)  # 真实数据维度,即生成器输出
    input_dim = args.input_dim  # 输入随机向量维度
    G_H_Dim = args.G_hidden_dim  # 设置G隐藏层的网络单元数量
    D_H_Dim = args.G_hidden_dim  # 设置D隐藏层的网络单元数量

    # 选择的站点
    stations = args.selected_stations

    # 载入数据并进行构造
    # 载入所有选定站点的数据集
    all_station_datasets = get_saved_datasets(args)
    # all_station_datasets = get_saved_datasets_vall(args)

    # 建立GAIN model
    # 新建生成器网络G
    G = Generator(input_dim, G_H_Dim, data_dim).to(args.device)
    # 新建判别器网络D
    D = Discriminator(data_dim, D_H_Dim).to(args.device)

    # 模型存储文件夹
    # model_file = save_path.split('/')[2]
    model_file = save_path.split('/')
    model_file = model_file[2] + '/' + model_file[3]

    if args.independent_usrs_training:
        # 建立每个客户的独立个体
        independent_usrs_G = []

        for i, s in enumerate(args.selected_stations):
            # 为每个站点新建一个独立的个体网络,载入本地模型
            independent_G = deepcopy(G)
            independent_D = deepcopy(D)
            # 载入本地的各站点的独立模型
            station_name = s + '{}{}'.format(i, args.num_d[i])
            independent_G, _ = load_model(independent_G, independent_D, 'idpt',
                                          station_name, model_file)
            independent_usrs_G.append(independent_G)

        # 各站点的独立模型,testing 在测试集进行评估
        print('\033[0;31;40m[Eval] Independent station Test \033[0m')
        idpt_mse_on_test_results = []
        idpt_d2_on_test_results = []
        idpt_r2_on_test_results = []
        idpt_all_rmse_on_test_results = []
        for idpt_g, dataset, station in zip(independent_usrs_G,
                                            all_station_datasets, stations):
            mse, d2, p2, all_rmse = fed_test(idpt_g, input_dim, dataset,
                                             station, args.select_dim)
            idpt_mse_on_test_results.append(mse)
            idpt_d2_on_test_results.append(d2)
            idpt_r2_on_test_results.append(p2)
            idpt_all_rmse_on_test_results.append(all_rmse)
            print(
                '\033[0;32;40m [Eval] - Station {} complete independent evaluation! \033[0m\n'
                .format(station))
        idpt_save_csv_pt = save_path + 'rmse/idpt/idpt_rmse_test_results_' + str(
            exp_num) + '.csv'
        # save_as_csv(idpt_save_csv_pt, idpt_mse_on_test_results, stations, 'MSE')
        save2csv(idpt_save_csv_pt, idpt_mse_on_test_results, stations,
                 args.select_dim)
        idpt_save_csv_pt = save_path + 'd2/idpt/idpt_d2_test_results_' + str(
            exp_num) + '.csv'
        # save_as_csv(idpt_save_csv_pt, idpt_d2_on_test_results, stations, 'D2')
        save2csv(idpt_save_csv_pt, idpt_d2_on_test_results, stations,
                 args.select_dim)
        idpt_save_csv_pt = save_path + 'r2/idpt/idpt_r2_test_results_' + str(
            exp_num) + '.csv'
        # save_as_csv(idpt_save_csv_pt, idpt_r2_on_test_results, stations, 'R2')
        save2csv(idpt_save_csv_pt, idpt_r2_on_test_results, stations,
                 args.select_dim)
        # 保存all-rsme
        fed_save_csv_pt = save_path + 'all_rmse/idpt/idpt_all_rmse_test_results_' + str(
            exp_num) + '.csv'
        save_as_csv(fed_save_csv_pt, idpt_all_rmse_on_test_results, 'all_rmse')
        print(
            '\033[0;33;40m >>> [Eval] Finished Idpt model evaluate on Test datasets! \033[0m\n'
        )
Example #4
0
def fed_main(args, save_path=''):
    if args.gan_categories == 'wGAN':
        # W-GAN
        from WAGIN_model import Generator, Discriminator, weights_init
        from WGAN_LocalUpdate import GANUpdate as LocalUpdate
    else:
        # 原始的GAN
        from Update import LocalUpdate
        from GAIN_model import Generator, Discriminator, weights_init
    # parse args
    args.device = torch.device(
        torch.device('cuda')
        if torch.cuda.is_available() and args.gpu != -1 else 'cpu')

    data_dim = len(args.select_dim)  # 真实数据维度,即生成器输出
    input_dim = args.input_dim  # 输入随机向量维度

    G_H_Dim = args.G_hidden_dim  # 设置G隐藏层的网络单元数量
    D_H_Dim = args.G_hidden_dim  # 设置D隐藏层的网络单元数量

    # 选择的站点
    stations = args.selected_stations

    # 载入数据并进行构造
    # 载入所有选定站点的数据集
    all_station_datasets = get_saved_datasets(args)

    # 建立GAIN model
    # 新建生成器网络G
    G = Generator(input_dim, G_H_Dim, data_dim).to(args.device)
    # 新建判别器网络D
    D = Discriminator(data_dim, D_H_Dim).to(args.device)

    G.apply(weights_init)
    D.apply(weights_init)

    # 建立每个客户的独立个体
    independent_usrs_G = []
    independent_usrs_D = []

    for _ in range(len(stations)):
        # 为每个站点新建一个独立的个体网络
        independent_G = deepcopy(G)
        independent_D = deepcopy(D)
        independent_usrs_G.append(independent_G)
        independent_usrs_D.append(independent_D)

    print('Generater network :\n', G)
    print('Discriminator network :\n', D)

    G.train()  # 生成网络
    D.train()  # 辨别网络

    # 拷贝网络参数
    g_w_glob = G.state_dict()
    d_w_glob = D.state_dict()

    # training
    # 用于记录训练过程数据
    g_loss_train, d_loss_train = [], []
    g_mse_train_loss_avg_l = []
    g_mse_test_loss_avg_l = []

    # 所有参与方进行独立的本地训练
    if args.independent_usrs_training:
        print('Start independent training!\n')
        # 用于记录indpendent local usr测试集结果
        local_mse_test_l = []
        num_p = len(args.selected_stations)
        num_d = args.num_d
        for p, d, idp_G, idp_D, dataset, station in zip(
                range(num_p), num_d, independent_usrs_G, independent_usrs_D,
                all_station_datasets, stations):
            # 针对load_dataset_v2,对不同参与方,每个参与方都有自己的站点数据添加
            if type(station) == list:
                station = 'P'
            station_name = station + '{}{}'.format(p, d)
            local = LocalUpdate(args=args)
            local_g = local.independent_training(idp_G, idp_D, dataset,
                                                 station_name, save_path)

        # 清除之前独立学习的主循环所占用的显存空间
        torch.cuda.empty_cache()

    # 写入训练过程数据
    fw_name = save_path + 'Fed_main_training_' + 'log.txt'
    fw_fed_main = open(fw_name, 'w+')
    fw_fed_main.write(
        'iter\t G_loss\t D_loss\t G_train_MSE_loss\t G_test_RMSE_loss\t \n')

    # 联邦学习主循环
    with tqdm(range(args.epochs)) as tq:
        for iter in tq:  # 暂时取消self.args.local_ep *
            tq.set_description('Federated Updating')
            g_w_locals, g_loss_locals, d_w_locals, d_loss_locals = [], [], [], []
            usrs_weights = []
            local_g_mse_train_loss, local_g_rmse_test_loss = [], []
            # 用于随机抽取指定数量的参与者加入联邦学习
            # m = max(int(args.frac * args.num_users), 1)
            # idxs_users = np.random.choice(range(args.num_users), m, replace=False)
            idxs_users = range(len(stations))  # 手动选定参与者
            for idx in idxs_users:
                local = LocalUpdate(args=args, idx=idx)
                w_g, w_d, g_loss, d_loss, g_mse_train_loss, g_rmse_test_loss, train_no = local.train(
                    G=copy.deepcopy(G).to(args.device),
                    D=copy.deepcopy(D).to(args.device),
                    dataset=all_station_datasets[idx],
                )

                # 记录weights
                g_w_locals.append(copy.deepcopy(w_g))
                d_w_locals.append(copy.deepcopy(w_d))
                # 记录参与方的模型参数权重
                usrs_weights.append(train_no)
                # 记录loss
                g_loss_locals.append(g_loss)
                d_loss_locals.append(d_loss)
                # 记录G MSE lossr
                local_g_mse_train_loss.append(g_mse_train_loss)
                local_g_rmse_test_loss.append(g_rmse_test_loss)
            # 使用联邦学习算法更新全局权重
            if args.weights_avg:
                if args.wa_type == 'missing_ratio':
                    w = norm(args.missing_ratios, if_verse=True)
                elif args.wa_type == 'missing_number':
                    w = norm(usrs_weights)
                g_w_glob = FedWeightedAvg(g_w_locals, w, use_soft=True)
                d_w_glob = FedWeightedAvg(d_w_locals, w, use_soft=True)
            else:
                g_w_glob = FedAvg(g_w_locals)
                d_w_glob = FedAvg(d_w_locals)

            # 全局模型载入联邦平均化之后的模型参数
            G.load_state_dict(g_w_glob)
            D.load_state_dict(d_w_glob)

            # 学习率衰减
            if iter + 1 % args.d_lr_decay_step == 0:
                d_lr = d_lr * args.d_lr_decay
            if iter + 1 % args.fed_g_lr_decay_step == 0:
                g_lr = g_lr * args.fed_g_lr_decay

            # 打印训练过程的loss
            g_loss_avg = sum(g_loss_locals) / len(g_loss_locals)
            d_loss_avg = sum(d_loss_locals) / len(d_loss_locals)
            g_mse_train_loss_avg = sum(local_g_mse_train_loss) / len(
                local_g_mse_train_loss)
            g_rmse_test_loss_avg = sum(local_g_rmse_test_loss) / len(
                local_g_rmse_test_loss)

            g_mse_train_loss_avg_l.append(g_mse_train_loss_avg)
            g_mse_test_loss_avg_l.append(g_rmse_test_loss_avg)

            # print('Fed Main Loop Round {:3d}, Average G loss {:.3f}, Average D loss {:.3f}'.format(iter, g_loss_avg,
            #                                                                                        d_loss_avg))
            # print('Train_MSE: {:.4}'.format(g_mse_train_loss_avg.item()))
            # print('Test_RMSE: {:.4}'.format(g_rmse_test_loss_avg.item()))

            tq.set_postfix(Avg_G_loss=g_loss_avg.item(),
                           Avg_D_loss=d_loss_avg.item(),
                           Fed_train_MSE=g_mse_train_loss_avg.item(),
                           Fed_test_RMSE=g_rmse_test_loss_avg.item())

            g_loss_train.append(g_loss_avg)
            d_loss_train.append(d_loss_avg)

            # 保存模型
            if iter % 5 == 0:
                # save_model_file = save_path.split('/')[2]
                file_name = save_path.split('/')
                save_model_file = file_name[2] + '/' + file_name[3]
                save_model(G, D, save_model_file)
            fw_fed_main.write(
                '{}\t {:.5f}\t {:.5f}\t {:.5f}\t {:.5f}\t \n'.format(
                    iter, g_loss_avg, d_loss_avg, g_mse_train_loss_avg,
                    g_rmse_test_loss_avg))

    # 绘制曲线
    fig, axs = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
    loss_plot(axs[0, 0], g_loss_train, 'G train loss')
    loss_plot(axs[0, 1], d_loss_train, 'D train loss')
    loss_plot(axs[1, 0], g_mse_train_loss_avg_l, 'G MSE training loss')
    loss_plot(axs[1, 1], g_mse_test_loss_avg_l, 'RMSE on training dataset')

    plt.savefig(save_path + 'fed_{}.eps'.format(args.epochs))
    plt.savefig(save_path + 'fed_{}.png'.format(args.epochs))

    # 关闭写入
    fw_fed_main.close()
    plt.cla()  # 清除之前绘图
    plt.close()
    # 清空GPU缓存
    torch.cuda.empty_cache()
Example #5
0
def fed_gain_test_exp(args, save_path='', exp_num=None):

    if args.gan_categories == 'wGAN':
        from WAGIN_model import Generator, Discriminator
    else:
        from GAIN_model import Generator, Discriminator

    # parse args
    # args = args_parser()
    args.device = torch.device('cuda:{}'.format(
        args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')

    data_dim = len(args.select_dim)  # 真实数据维度,即生成器输出
    input_dim = args.input_dim  # 输入随机向量维度
    G_H_Dim = args.G_hidden_dim  # 设置G隐藏层的网络单元数量
    D_H_Dim = args.G_hidden_dim  # 设置D隐藏层的网络单元数量

    # 选择的站点sss
    stations = args.selected_stations
    # 针对load_dataset_v2,对不同参与方,每个参与方都有自己的站点数据添加
    if type(stations) == list:
        s_name = []
        for si in range(len(stations)):
            s_name.append('P' + str(si))
        stations = s_name

    # 载入数据并进行构造
    # 载入所有选定站点的数据集
    all_station_datasets = get_saved_datasets(args)

    # 建立GAIN model
    # 新建生成器网络G
    G = Generator(input_dim, G_H_Dim, data_dim).to(args.device)
    # 新建判别器网络D
    D = Discriminator(data_dim, D_H_Dim).to(args.device)

    # 模型存储文件夹
    # model_file = save_path.split('/')[2]
    model_file = save_path.split('/')
    model_file = model_file[2] + '/' + model_file[3]

    if args.independent_usrs_training:
        # 建立每个客户的独立个体
        independent_usrs_G = []
        independent_usrs_D = []

        for i, s in enumerate(args.selected_stations):
            # 为每个站点新建一个独立的个体网络,载入本地模型
            independent_G = deepcopy(G)
            independent_D = deepcopy(D)
            # 载入本地的各站点的独立模型
            if type(s) == list:
                s = 'P'
            station_name = s + '{}{}'.format(i, args.num_d[i])
            load_model(independent_G, independent_D, 'idpt', station_name,
                       model_file)
            independent_usrs_G.append(independent_G)
            independent_usrs_D.append(independent_D)

        # 各站点的独立模型,testing 在测试集进行评估
        print(
            '============== Independent station Test =======================')
        idpt_mse_on_test_results = []
        idpt_d2_on_test_results = []
        idpt_r2_on_test_results = []
        idpt_all_rmse_on_test_results = []
        for idpt_g, dataset, station in zip(independent_usrs_G,
                                            all_station_datasets, stations):
            mse, d2, p2, all_rmse = fed_test(idpt_g, input_dim, dataset,
                                             station, args.select_dim)
            idpt_mse_on_test_results.append(mse)
            idpt_d2_on_test_results.append(d2)
            idpt_r2_on_test_results.append(p2)
            idpt_all_rmse_on_test_results.append(all_rmse)
            print('[Idpt eval]- Station {} complete independent evaluation!\n'.
                  format(station))
        idpt_save_csv_pt = save_path + 'rmse/idpt/idpt_mse_test_results_' + str(
            exp_num) + '.csv'
        # save_as_csv(idpt_save_csv_pt, idpt_mse_on_test_results, stations, 'MSE')
        save2csv(idpt_save_csv_pt, idpt_mse_on_test_results, stations,
                 args.select_dim)
        idpt_save_csv_pt = save_path + 'd2/idpt/idpt_d2_test_results_' + str(
            exp_num) + '.csv'
        # save_as_csv(idpt_save_csv_pt, idpt_d2_on_test_results, stations, 'D2')
        save2csv(idpt_save_csv_pt, idpt_d2_on_test_results, stations,
                 args.select_dim)
        idpt_save_csv_pt = save_path + 'r2/idpt/idpt_r2_test_results_' + str(
            exp_num) + '.csv'
        # save_as_csv(idpt_save_csv_pt, idpt_r2_on_test_results, stations, 'R2')
        save2csv(idpt_save_csv_pt, idpt_r2_on_test_results, stations,
                 args.select_dim)
        # 保存all-rsme
        fed_save_csv_pt = save_path + 'all_rmse/idpt/idpt_all_rmse_test_results_' + str(
            exp_num) + '.csv'
        save_as_csv(fed_save_csv_pt, idpt_all_rmse_on_test_results, 'all_rmse')
        print(
            '[Idpt eval]>>> Finished Idpt model evaluate on Test datasets!\n')

    # 载入本地联邦模型参数
    load_model(G, D, 'fed', station='', save_file=model_file)

    # testing 在测试集进行评估
    print(
        '[Fed eval]===================== Federated station Test ======================='
    )
    fed_mse_on_test_results = []
    fed_d2_on_test_results = []
    fed_r2_on_test_results = []
    all_rmse_on_test_results = []
    for dataset, station in zip(all_station_datasets, stations):
        mse, d2, p2, all_rmse = fed_test(G, input_dim, dataset, station,
                                         args.select_dim)
        fed_mse_on_test_results.append(mse)
        fed_d2_on_test_results.append(d2)
        fed_r2_on_test_results.append(p2)
        all_rmse_on_test_results.append(all_rmse)
        print('[Fed Eval] Station {} complete federated evaluation!\n'.format(
            station))
    # 保存到本地
    fed_save_csv_pt = save_path + 'rmse/fed/fed_mse_test_results_' + str(
        exp_num) + '.csv'
    save2csv(fed_save_csv_pt, fed_mse_on_test_results, stations,
             args.select_dim)
    # save_as_csv(fed_save_csv_pt, fed_mse_on_test_results, stations, 'MSE')
    fed_save_csv_pt = save_path + 'd2/fed/fed_d2_test_results_' + str(
        exp_num) + '.csv'
    # save_as_csv(fed_save_csv_pt, fed_d2_on_test_results, stations, 'D2')
    save2csv(fed_save_csv_pt, fed_d2_on_test_results, stations,
             args.select_dim)
    fed_save_csv_pt = save_path + 'r2/fed/fed_r2_test_results_' + str(
        exp_num) + '.csv'
    # save_as_csv(fed_save_csv_pt, fed_r2_on_test_results, stations, 'R2')
    save2csv(fed_save_csv_pt, fed_r2_on_test_results, stations,
             args.select_dim)
    # 保存all-rsme
    fed_save_csv_pt = save_path + 'all_rmse/fed/fed_all_rmse_test_results_' + str(
        exp_num) + '.csv'
    save_as_csv(fed_save_csv_pt, all_rmse_on_test_results, 'all_rmse')
    print('>>>[Fed Eval] Finished Fed model evaluate on Test datasets!')