Example #1
0
 def testExportKey14(self):
     # Export and re-import the encrypted key. It must match.
     # DER envelope, PKCS#8, PKCS#8 encryption
     key = RSA.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
     outkey = key.export_key('DER', 'test', pkcs=8)
     inkey = RSA.importKey(outkey, 'test')
     self.assertEqual(key.n, inkey.n)
     self.assertEqual(key.e, inkey.e)
     self.assertEqual(key.d, inkey.d)
 def testDecrypt1(self):
         # Verify decryption using all test vectors
         for test in self._testData:
                 # Build the key
                 comps = [ long(rws(test[0][x]),16) for x in ('n','e','d') ]
                 key = RSA.construct(comps)
                 # The real test
                 cipher = PKCS.new(key, test[4])
                 pt = cipher.decrypt(t2b(test[2]))
                 self.assertEqual(pt, t2b(test[1]))
Example #3
0
 def testExportKey12(self):
     # Export and re-import the encrypted key. It must match.
     # PEM envelope, PKCS#8, old PEM encryption
     key = RSA.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
     outkey = key.export_key('PEM', 'test', pkcs=8)
     self.failUnless(tostr(outkey).find('4,ENCRYPTED')!=-1)
     self.failUnless(tostr(outkey).find('BEGIN PRIVATE KEY')!=-1)
     inkey = RSA.importKey(outkey, 'test')
     self.assertEqual(key.n, inkey.n)
     self.assertEqual(key.e, inkey.e)
     self.assertEqual(key.d, inkey.d)
Example #4
0
 def testExportKey13(self):
     # Export and re-import the encrypted key. It must match.
     # PEM envelope, PKCS#8, PKCS#8 encryption
     key = RSA.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
     outkey = key.export_key('PEM', 'test', pkcs=8,
             protection='PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC')
     self.failUnless(tostr(outkey).find('4,ENCRYPTED')==-1)
     self.failUnless(tostr(outkey).find('BEGIN ENCRYPTED PRIVATE KEY')!=-1)
     inkey = RSA.importKey(outkey, 'test')
     self.assertEqual(key.n, inkey.n)
     self.assertEqual(key.e, inkey.e)
     self.assertEqual(key.d, inkey.d)
Example #5
0
def key_from_b64(b64_key):
    binaryKey = base64.b64decode(b64_key)

    i = bytes_to_long(binaryKey[:4])
    mod = bytes_to_long(binaryKey[4:4+i])

    j = bytes_to_long(binaryKey[i+4:i+4+4])
    exponent = bytes_to_long(binaryKey[i+8:i+8+j])

    key = RSA.construct((mod, exponent))

    return key
Example #6
0
    def deserialize(self):
        if self.n and self.e:
            try:
                for param in self.longs:
                    item = getattr(self, param)
                    if not item or isinstance(item, six.integer_types):
                        continue
                    else:
                        try:
                            val = long(deser(item))
                        except Exception:
                            raise
                        else:
                            setattr(self, param, val)

                lst = [self.n, self.e]
                if self.d:
                    lst.append(self.d)
                if self.p:
                    lst.append(self.p)
                    if self.q:
                        lst.append(self.q)
                    self.key = RSA.construct(tuple(lst))
                else:
                    self.key = RSA.construct(lst)
            except ValueError as err:
                raise DeSerializationNotPossible("%s" % err)
        elif self.x5c:
            der_cert = base64.b64decode(self.x5c[0].encode("ascii"))

            if self.x5t:  # verify the cert
                if not b64d(self.x5t.encode("ascii")) == hashlib.sha1(der_cert).digest():
                    raise DeSerializationNotPossible("The thumbprint ('x5t') does not match the certificate.")

            self.key = der2rsa(der_cert)
            self._split()
            if len(self.x5c) > 1:  # verify chain
                pass
        else:
            raise DeSerializationNotPossible()
 def testEncrypt1(self):
         # Verify encryption using all test vectors
         for test in self._testData:
                 # Build the key
                 comps = [ long(rws(test[0][x]),16) for x in ('n','e') ]
                 key = RSA.construct(comps)
                 # RNG that takes its random numbers from a pool given
                 # at initialization
                 class randGen:
                     def __init__(self, data):
                         self.data = data
                         self.idx = 0
                     def __call__(self, N):
                         r = self.data[self.idx:N]
                         self.idx += N
                         return r
                 # The real test
                 cipher = PKCS.new(key, test[4], randfunc=randGen(t2b(test[3])))
                 ct = cipher.encrypt(t2b(test[1]))
                 self.assertEqual(ct, t2b(test[2]))
Example #8
0
def privatekeyblob_to_pkcs1(key):
    '''
    parse private key into pkcs#1 format
    :param key:
    :return:
    '''
    modulus = bytes_to_long(key['modulus'][::-1]) # n
    prime1 = bytes_to_long(key['prime1'][::-1]) # p
    prime2 = bytes_to_long(key['prime2'][::-1]) # q
    exp1 = bytes_to_long(key['exponent1'][::-1])
    exp2 = bytes_to_long(key['exponent2'][::-1])
    coefficient = bytes_to_long(key['coefficient'][::-1])
    privateExp = bytes_to_long(key['privateExponent'][::-1]) # d
    if PY3:
        long = int
    pubExp = long(key['rsapubkey']['pubexp']) # e
    # RSA.Integer(prime2).inverse(prime1) # u

    r = RSA.construct((modulus, pubExp, privateExp, prime1, prime2))
    return r
Example #9
0
 def testExportKey2(self):
     key = RSA.construct([self.n, self.e])
     derKey = key.export_key("DER")
     self.assertEqual(derKey, self.rsaPublicKeyDER)
Example #10
0
 def testExportKey9(self):
     key = RSA.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
     self.assertRaises(ValueError, key.export_key, "invalid-format")
Example #11
0
 def testExportKey8(self):
     key = RSA.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
     pemKey = key.export_key("PEM", pkcs=8)
     self.assertEqual(pemKey, b(self.rsaKeyPEM8))
Example #12
0
 def testExportKey7(self):
     key = RSA.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
     derKey = key.export_key("DER", pkcs=8)
     self.assertEqual(derKey, self.rsaKeyDER8)
Example #13
0
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_OAEP
from gmpy2 import *

public_key = RSA.importKey(open('../Files/oligarchy.pem', 'r').read())
n = public_key.n
e = public_key.e
r = 21700996784810065805847020455080940987640304282783092123992896363328128691169420271855815648912121417792054646557156071514079520782530801688062034321252682229729442734741486715339008457753023855600772948737800521010217600436912058582658334252483984244806083617513596479033871117464319239681526924092910597300
c = 85407181759755287105309527383534372436668736072315927293076398182206068631971587183149437554341349819060482477969350837066653250734556920049021810122548703168301872412719117857995283679569989680329696657609285728934732302846152702363240223251805773071022405764521081142920227557091217872210813095318042763847

k = 0
while True:
    k += 1
    phi = r * k
    pq = n + 1 - phi
    delta = pq * pq - 4 * n
    p = (pq + isqrt(delta)) / 2
    q = (pq - isqrt(delta)) / 2
    if p * q == n:
        break

d = long(invert(e, phi))

private_key = RSA.construct([n, e, d])
ciphertext = hex(c)[2:-1].decode('hex')
cipher = PKCS1_OAEP.new(private_key)
message = cipher.decrypt(ciphertext)
print(message)
Example #14
0
 def testExportKey15(self):
     # Verify that that error an condition is detected when trying to
     # use a password with DER encoding and PKCS#1.
     key = RSA.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
     self.assertRaises(ValueError, key.export_key, 'DER', 'test', 1)
                                 { 'shaalg' : lambda x: x,
                                   'result' : lambda x: x })


for count, tv in enumerate(test_vectors_verify):
    if isinstance(tv, basestring):
        continue
    if hasattr(tv, "n"):
        modulus = tv.n
        continue
    if hasattr(tv, "p"):
        continue

    hash_module = load_hash_by_name(tv.shaalg.upper())
    hash_obj = hash_module.new(tv.msg)
    public_key = RSA.construct([bytes_to_long(x) for x in modulus, tv.e])
    if tv.saltval != b("\x00"):
        prng = PRNG(tv.saltval)
        verifier = pss.new(public_key, salt_bytes=len(tv.saltval), rand_func=prng)
    else:
        verifier = pss.new(public_key, salt_bytes=0)

    def positive_test(self, hash_obj=hash_obj, verifier=verifier, signature=tv.s):
        verifier.verify(hash_obj, signature)

    def negative_test(self, hash_obj=hash_obj, verifier=verifier, signature=tv.s):
        self.assertRaises(ValueError, verifier.verify, hash_obj, signature)

    if tv.result == 'p':
        setattr(FIPS_PKCS1_Verify_Tests, "test_positive_%d" % count, positive_test)
    else:
Example #16
0
                                 { 'shaalg' : lambda x: x,
                                   'result' : lambda x: x })


for count, tv in enumerate(test_vectors_verify):
    if isinstance(tv, str):
        continue
    if hasattr(tv, "n"):
        modulus = tv.n
        continue
    if hasattr(tv, "p"):
        continue

    hash_module = load_hash_by_name(tv.shaalg.upper())
    hash_obj = hash_module.new(tv.msg)
    public_key = RSA.construct([bytes_to_long(x) for x in (modulus, tv.e)]) # type: ignore
    if tv.saltval != b("\x00"):
        prng = PRNG(tv.saltval)
        verifier = pss.new(public_key, salt_bytes=len(tv.saltval), rand_func=prng)
    else:
        verifier = pss.new(public_key, salt_bytes=0)

    def positive_test(self, hash_obj=hash_obj, verifier=verifier, signature=tv.s):
        verifier.verify(hash_obj, signature)

    def negative_test(self, hash_obj=hash_obj, verifier=verifier, signature=tv.s):
        self.assertRaises(ValueError, verifier.verify, hash_obj, signature)

    if tv.result == 'p':
        setattr(FIPS_PKCS1_Verify_Tests_KAT, "test_positive_%d" % count, positive_test)
    else:
Example #17
0
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = egcd(b % a, a)
        return (g, x - (b // a) * y, y)

def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        raise Exception('modular inverse does not exist')
    else:
        return x % m

p = 169530237952573748368189799955682467382981190128045440195079928264906866742107349991159212259885000722467900686913850878305620267449769263730115304350546079431887015026437175510788840243478206301763434168031512699332213142859495368291002844907298298139858769109574355617458546385307241287393358156444715347793
q = 152588087402514219857833878620153666945304685640627758617917943381504393210558706803164637632719012980584990911366861074062265597247464995913960044489757238590130973545737766726863067136702127127671612008426543868375658445766104812898282701044498346675255344027978615813725491513556318640569390490700167272861

phi_n = (p - 1)*(q - 1)

e2 = generateLargePrime(256)
while 'Failure' in str(e2)[:len('Failure')]:
    e2 = generateLargePrime(256)
d2 = modinv(e2, phi_n)

key2 = RSA.construct((p*q, e2, d2, p, q))

print "Private Key:\n"
print key2.exportKey('PEM')

print "Public Key:\n"
print key2.publickey().exportKey('PEM')
 def testExportKey1(self):
     key = RSA.construct(
         [self.n, self.e, self.d, self.p, self.q, self.pInv])
     derKey = key.export_key("DER")
     self.assertEqual(derKey, self.rsaKeyDER)
Example #19
0
 def test_exportKey(self):
     key = RSA.construct([self.n, self.e, self.d, self.p, self.q, self.pInv])
     self.assertEqual(key.export_key(), key.exportKey())
Example #20
0
 def testExportKey4(self):
     key = RSA.construct([self.n, self.e])
     pemKey = key.export_key("PEM")
     self.assertEqual(pemKey, b(self.rsaPublicKeyPEM))
Example #21
0
 def testExportKey5(self):
     key = RSA.construct([self.n, self.e])
     openssh_1 = key.export_key("OpenSSH").split()
     openssh_2 = self.rsaPublicKeyOpenSSH.split()
     self.assertEqual(openssh_1[0], openssh_2[0])
     self.assertEqual(openssh_1[1], openssh_2[1])
Example #22
0
 def __init__(self, der):
     key = ASN1Parser([x for x in der])
     key = [key.getChild(x).value for x in range(1, 4)]
     key = [self.bytesToNumber(v) for v in key]
     self._rsa = _RSA.construct(key)