Example #1
0
 def set_edge_threshold(self, value):
     """ This is size of the border where the features are not detected. It should roughly match the
     patchSize parameter. """
     if int(value) < 1:
         raise FeatureDetectorError(
             "ORB edge threshold must be positive integer")
     self._edge_threshold = int(value)
Example #2
0
    def create(det_type, options=None):
        if det_type not in DetectorType.LIST_ALL:
            raise FeatureDetectorError(
                "Unknown detector type: {}".format(det_type))

        if det_type == DetectorType.ORB:
            detector = OrbDetector()
        elif det_type == DetectorType.SIFT:
            detector = SiftDetector()
        elif det_type == DetectorType.SURF:
            detector = SurfDetector()
        # MSER currently has no wrapper class due to the format of the output - need to update to reinstate this
        # elif type == DetectorType.MSER:
        #     detector = MserDetector()
        elif det_type == DetectorType.BRISK:
            detector = BriskDetector()
        else:
            detector = Detector(detector=det_type)

        if options is not None:
            detector_options = options.get_detector_options(det_type)
            detector.set_from_config(detector_options)

        if detector.is_non_free():
            licensing = options.get_licensing_options()
            use_non_free = licensing.use_non_free.value()
            if not use_non_free:
                detector.set_enabled(False)

        return detector
Example #3
0
 def set_n_levels(self, value):
     """ The number of pyramid levels. The smallest level will have linear size equal to
     input_image_linear_size/pow(scaleFactor, nlevels). """
     if int(value) < 1:
         raise FeatureDetectorError(
             "ORB number of levels must be positive integer")
     self._n_levels = int(value)
Example #4
0
 def set_scale_factor(self, value):
     """ Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical pyramid, where each
     next level has 4x less pixels than the previous, but such a big scale factor will degrade feature
     matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover
     certain scale range you will need more pyramid levels and so the speed will suffer. """
     if float(value) <= 1.0:
         raise FeatureDetectorError("ORB scale factor must be float great than 1.0")
     self._scale_factor = float(value)
Example #5
0
    def set_score_type(self, value):
        """ The default HARRIS_SCORE means that Harris algorithm is used to rank features (the score is written
        to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE is alternative value of
        the parameter that produces slightly less stable keypoints, but it is a little faster to compute. """
        if value not in self.SCORE_TYPE_NAMES:
            raise FeatureDetectorError("ORB score type value must be one of {}".format(self.SCORE_TYPE_NAMES))

        self._score_type = value
    def __init__(self, detector=DEFAULT_DETECTOR):
        """ Supply a detector name to use that detector with all its default parameters. """
        if detector not in DetectorType.LIST_ALL:
            raise FeatureDetectorError("No such feature detector available: " +
                                       detector)

        self._detector_name = detector
        self._adaptation = self.DEFAULT_ADAPTATION
        self._extractor_name = self.DEFAULT_EXTRACTOR
        self._normalization = self._default_normalization()
        self._keypoint_limit = self.DEFAULT_KEYPOINT_LIMIT
Example #7
0
 def set_wta_k(self, value):
     """ The number of points that produce each element of the oriented BRIEF descriptor. The default value
     2 means the BRIEF where we take a random point pair and compare their brightnesses, so we get 0/1
     response. Other possible values are 3 and 4. For example, 3 means that we take 3 random points (of
     course, those point coordinates are random, but they are generated from the pre-defined seed, so each
     element of BRIEF descriptor is computed deterministically from the pixel rectangle), find point of
     maximum brightness and output index of the winner (0, 1 or 2). Such output will occupy 2 bits, and
     therefore it will need a special variant of Hamming distance, denoted as NORM_HAMMING2 (2 bits per bin).
     When WTA_K=4, we take 4 random points to compute each bin (that will also occupy 2 bits with possible
     values 0, 1, 2 or 3)."""
     if value not in self.WTA_K_VALUES:
         raise FeatureDetectorError("ORB WTA_K value must be one of {}".format(self.WTA_K_VALUES))
     self._wta_k = value
    def create(det_type, options=None):
        if det_type not in DetectorType.LIST_ALL:
            raise FeatureDetectorError(
                "Unknown detector type: {}".format(det_type))

        if det_type == DetectorType.ORB:
            detector = OrbDetector()
        elif det_type == DetectorType.BRISK:
            detector = BriskDetector()
        else:
            detector = Detector(detector=det_type)

        if options is not None:
            detector_options = options.get_detector_options(det_type)
            detector.set_from_config(detector_options)

        return detector
Example #9
0
 def set_n_octave_layers(self, value):
     """ The number of images within each octave of a gaussian pyramid. """
     if int(value) < 0:
         raise FeatureDetectorError("SURF number of octave layers must be integer >= 1")
     self._n_octaves = int(value)
 def set_octaves(self, value):
     """ Detection octaves. Use 0 to do single scale. """
     if int(value) < 0:
         raise FeatureDetectorError("BRISK octaves must be integer >= 0")
     self._octaves = int(value)
Example #11
0
 def set_n_features(self, value):
     """ The maximum number of features to retain. """
     if int(value) < 1:
         raise FeatureDetectorError(
             "ORB number of features must be positive integer")
     self._n_features = int(value)
Example #12
0
 def set_patch_size(self, value):
     """ Size of the patch used by the oriented BRIEF descriptor. Of course, on smaller pyramid layers the
     perceived image area covered by a feature will be larger. """
     if int(value) < 2:
         raise FeatureDetectorError("ORB patch size must be integer >= 2")
     self._patch_size = int(value)
Example #13
0
 def set_edge_blur_size(self, value):
     """ For color image, the aperture size for edge blur. """
     if int(value) < 1:
         raise FeatureDetectorError(
             "MSER edge blur size must be positive integer")
     self._edge_blur_size = int(value)
Example #14
0
 def set_max_evolution(self, value):
     """ For color image, the evolution steps. """
     if int(value) < 1:
         raise FeatureDetectorError(
             "MSER maximum evolution must be positive integer")
     self._max_evolution = int(value)
Example #15
0
 def set_max_area(self, value):
     """ Prune the area which bigger than maxArea. """
     if int(value) < 1:
         raise FeatureDetectorError(
             "MSER maximum area must be positive integer")
     self._max_area = int(value)
Example #16
0
 def set_min_area(self, value):
     """ Prune the area which smaller than minArea. """
     if int(value) < 1:
         raise FeatureDetectorError(
             "MSER minimum area must be positive integer")
     self._min_area = int(value)
 def set_thresh(self, value):
     """ FAST/AGAST detection threshold score. """
     if int(value) < 0:
         raise FeatureDetectorError("BRISK threshold must be integer >= 0")
     self._thresh = int(value)
Example #18
0
 def set_first_level(self, value):
     """ Should be 0 in the current implementation. """
     if int(value) != 0:
         raise FeatureDetectorError("ORB first level value must be 0")
     self._first_level = int(value)
Example #19
0
 def set_adaptation(self, adaptation):
     if adaptation not in AdaptationType.LIST_ALL:
         raise FeatureDetectorError(
             "No such feature detector adaptation available: " + adaptation)
     self._adaptation = adaptation
Example #20
0
 def set_delta(self, value):
     """ Compares (sizei - sizei-delta)/sizei-delta. """
     if int(value) < 1:
         raise FeatureDetectorError("MSER delta must be positive integer")
     self._delta = int(value)
Example #21
0
 def set_n_octaves(self, value):
     """ The number of a gaussian pyramid octaves that the detector uses. It is set to 4 by default. If you
     want to get very large features, use the larger value. If you want just small features, decrease it. """
     if int(value) < 0:
         raise FeatureDetectorError("SURF number of octaves must be integer >= 0")
     self._n_octaves = int(value)