Example #1
0
File: utils_t.py Project: ktf/DAS
 def test_das_sinfo(self):
     "Test das_sinfo function"
     das = {'system':['dbs', 'dbs', 'phedex'], 'api':['one', 'two', 'thr']}
     row = {'das':das, 'foo':[{'dbs':1}, {'a':1}, {'phedex':1}]}
     result = das_sinfo(row)
     expect = {'dbs':set(['one', 'two']), 'phedex':set(['three'])}
     self.assertEqual(expect, expect)
Example #2
0
 def test_das_sinfo(self):
     "Test das_sinfo function"
     das = {
         'system': ['dbs', 'dbs', 'phedex'],
         'api': ['one', 'two', 'thr']
     }
     row = {'das': das, 'foo': [{'dbs': 1}, {'a': 1}, {'phedex': 1}]}
     result = das_sinfo(row)
     expect = {'dbs': set(['one', 'two']), 'phedex': set(['three'])}
     self.assertEqual(expect, expect)
Example #3
0
File: das_core.py Project: ktf/DAS
    def get_from_cache(self, dasquery, idx=0, limit=0, collection='merge'):
        """
        Look-up results from the merge cache and yield them for
        further processing.
        """
        das_timer('DASCore::get_from_cache', self.verbose)
        msg = 'col=%s, query=%s, idx=%s, limit=%s'\
                % (collection, dasquery, idx, limit)
        self.logger.info(msg)

        fields  = dasquery.mongo_query.get('fields', None)

        if  dasquery.mapreduce:
            res = self.rawcache.map_reduce(dasquery.mapreduce, dasquery)
        elif dasquery.aggregators:
            # extract das information from rawcache
            rows  = self.rawcache.get_from_cache(\
                    dasquery, collection=collection)
            first = rows.next()
            sinfo = das_sinfo(first)
            # to perform aggregation we need:
            # - loop over all aggregator functions
            # - loop over all data-services
            # - loop over all APIs within a data-services
            # the code below does that, it applies aggregator
            # to selected (based on key/srv/api) records
            res = []
            _id = 0
            time0  = time.time()
            expire = 300 # min expire
            for func, key in dasquery.aggregators:
                afunc = getattr(das_aggregator, 'das_%s' % func)
                found = False
                for srv, apis, in sinfo.items():
                    for api in apis:
                        rows  = self.rawcache.get_from_cache(\
                                dasquery, collection=collection)
                        gen   = api_rows(rows, api)
                        data  = afunc(key, gen)
                        ctime = time.time() - time0
                        das   = dasheader(srv, dasquery, expire, api=api,
                                ctime=ctime)
                        if  isinstance(data, dict) and data['value'] != 'N/A':
                            aggr = {'_id':_id, 'function': func,
                                    'key': key, 'result': data}
                            aggr.update(das)
                            res.append(aggr)
                            _id += 1
                            found = True
                if  not found: # when we got nothing add empty result record
                    empty = {'value':'N/A'}
                    ctime = time.time() - time0
                    das = dasheader('das', dasquery, expire, api='das_core',
                            ctime=ctime)
                    rec = {'_id':0, 'function':func, 'key':key, 'result':empty}
                    rec.update(das)
                    res.append(rec)
        elif isinstance(fields, list) and 'queries' in fields:
            res = itertools.islice(self.get_queries(dasquery), idx, idx+limit)
        else:
            res = self.rawcache.get_from_cache(dasquery, idx, limit, \
                    collection=collection)
        for row in res:
            fix_times(row)
            yield row
        das_timer('DASCore::get_from_cache', self.verbose)
Example #4
0
    def get_from_cache(self, dasquery, idx=0, limit=0, collection='merge'):
        """
        Look-up results from the merge cache and yield them for
        further processing.
        """
        das_timer('DASCore::get_from_cache', self.verbose)
        msg = 'col=%s, query=%s, idx=%s, limit=%s'\
                % (collection, dasquery, idx, limit)
        self.logger.info(msg)

        fields = dasquery.mongo_query.get('fields', None)

        if dasquery.mapreduce:
            res = self.rawcache.map_reduce(dasquery.mapreduce, dasquery)
        elif dasquery.aggregators:
            # extract das information from rawcache
            rows  = self.rawcache.get_from_cache(\
                    dasquery, collection=collection)
            first = next(rows)
            sinfo = das_sinfo(first)
            # to perform aggregation we need:
            # - loop over all aggregator functions
            # - loop over all data-services
            # - loop over all APIs within a data-services
            # the code below does that, it applies aggregator
            # to selected (based on key/srv/api) records
            res = []
            _id = 0
            time0 = time.time()
            expire = 300  # min expire
            for func, key in dasquery.aggregators:
                afunc = getattr(das_aggregator, 'das_%s' % func)
                found = False
                for srv, apis, in sinfo.items():
                    for api in apis:
                        rows  = self.rawcache.get_from_cache(\
                                dasquery, collection=collection)
                        gen = api_rows(rows, api)
                        data = afunc(key, gen)
                        ctime = time.time() - time0
                        das = dasheader(srv,
                                        dasquery,
                                        expire,
                                        api=api,
                                        ctime=ctime)
                        if isinstance(data, dict) and data['value'] != 'N/A':
                            aggr = {
                                '_id': _id,
                                'function': func,
                                'key': key,
                                'result': data
                            }
                            aggr.update(das)
                            res.append(aggr)
                            _id += 1
                            found = True
                if not found:  # when we got nothing add empty result record
                    empty = {'value': 'N/A'}
                    ctime = time.time() - time0
                    das = dasheader('das',
                                    dasquery,
                                    expire,
                                    api='das_core',
                                    ctime=ctime)
                    rec = {
                        '_id': 0,
                        'function': func,
                        'key': key,
                        'result': empty
                    }
                    rec.update(das)
                    res.append(rec)
        else:
            res = self.rawcache.get_from_cache(dasquery, idx, limit, \
                    collection=collection)
        # we assume that all records from single query will have
        # identical structure, therefore it will be sufficient to update
        # keylearning DB only with first record
        count = 0
        for row in res:
            if not count:
                self.keylearning.add_record(dasquery, row)
            fix_times(row)
            yield row
            count += 1
        das_timer('DASCore::get_from_cache', self.verbose)
Example #5
0
File: das_core.py Project: dmwm/DAS
    def get_from_cache(self, dasquery, idx=0, limit=0, collection="merge"):
        """
        Look-up results from the merge cache and yield them for
        further processing.
        """
        das_timer("DASCore::get_from_cache", self.verbose)
        msg = "col=%s, query=%s, idx=%s, limit=%s" % (collection, dasquery, idx, limit)
        self.logger.info(msg)

        fields = dasquery.mongo_query.get("fields", None)

        if dasquery.mapreduce:
            res = self.rawcache.map_reduce(dasquery.mapreduce, dasquery)
        elif dasquery.aggregators:
            # extract das information from rawcache
            rows = self.rawcache.get_from_cache(dasquery, collection=collection)
            first = next(rows)
            sinfo = das_sinfo(first)
            # to perform aggregation we need:
            # - loop over all aggregator functions
            # - loop over all data-services
            # - loop over all APIs within a data-services
            # the code below does that, it applies aggregator
            # to selected (based on key/srv/api) records
            res = []
            _id = 0
            time0 = time.time()
            expire = 300  # min expire
            for func, key in dasquery.aggregators:
                afunc = getattr(das_aggregator, "das_%s" % func)
                found = False
                for srv, apis in sinfo.items():
                    for api in apis:
                        rows = self.rawcache.get_from_cache(dasquery, collection=collection)
                        gen = api_rows(rows, api)
                        data = afunc(key, gen)
                        ctime = time.time() - time0
                        das = dasheader(srv, dasquery, expire, api=api, ctime=ctime)
                        if isinstance(data, dict) and data["value"] != "N/A":
                            aggr = {"_id": _id, "function": func, "key": key, "result": data}
                            aggr.update(das)
                            res.append(aggr)
                            _id += 1
                            found = True
                if not found:  # when we got nothing add empty result record
                    empty = {"value": "N/A"}
                    ctime = time.time() - time0
                    das = dasheader("das", dasquery, expire, api="das_core", ctime=ctime)
                    rec = {"_id": 0, "function": func, "key": key, "result": empty}
                    rec.update(das)
                    res.append(rec)
        else:
            res = self.rawcache.get_from_cache(dasquery, idx, limit, collection=collection)
        # we assume that all records from single query will have
        # identical structure, therefore it will be sufficient to update
        # keylearning DB only with first record
        count = 0
        for row in res:
            if not count:
                self.keylearning.add_record(dasquery, row)
            fix_times(row)
            yield row
            count += 1
        das_timer("DASCore::get_from_cache", self.verbose)