#Debugging import ipdb import matplotlib.pyplot as plt plt.rcParams['image.cmap'] = 'tab10' plt.close('all') ## MAJOR PARAMETERS for our partial biometric analysis do_pts = ['901', '903', '905', '906', '907', '908' ] # Which patients do we want to include in this entire analysis? test_scale = 'pHDRS17' # Which scale are we using as the measurement of the depression state? pHDRS17 = nHDRS (from paper) and is a patient-specific normalized HDRS # Initial # Now we set up our DBSpace environment #ClinFrame = ClinVect.CFrame(norm_scales=True) ClinFrame = ClinVect.CStruct() #BRFrame = BRDF.BR_Data_Tree(preFrame='Chronic_Frame.pickle') null_distribution = [] for ii in range(100): #%% BRFrame = pickle.load( open('/home/virati/Dropbox/Data/Chronic_FrameMay2020.pickle', "rb")) main_readout = decoder.weekly_decoderCV( BRFrame=BRFrame, ClinFrame=ClinFrame, pts=do_pts, clin_measure=test_scale, algo='ENR', alpha=-4, shuffle_null=True) #main analysis is -3.4
import pickle # General python libraries import scipy.signal as sig import numpy as np # Plotting Libraries import matplotlib.pyplot as plt import seaborn as sns #Do some cleanup of the plotting space plt.close('all') sns.set_context('paper') sns.set_style('white') sns.set(font_scale=4) # Misc libraries import copy import itertools import scipy.stats as stats import ipdb #%% Initial # Now we set up our DBSpace environment ClinFrame = ClinVect.CFrame(norm_scales=True) #BRFrame = BRDF.BR_Data_Tree(preFrame='Chronic_Frame_2019.pickle') BRFrame = pickle.load( open('/home/virati/Dropbox/Data/Chronic_Frame_2019.pickle', "rb")) readout = DSV.DMD_RO(BRFrame, ClinFrame) readout.default_run()