Example #1
0
def train(cfg,env,agent):
    print('Start to train ! ')
    ou_noise = OUNoise(env.action_space) # action noise
    rewards = []
    ma_rewards = [] # moving average rewards
    ep_steps = []
    for i_episode in range(cfg.train_eps):
        state = env.reset()
        ou_noise.reset()
        done = False
        ep_reward = 0
        i_step = 0
        while not done:
            i_step += 1
            action = agent.choose_action(state)
            action = ou_noise.get_action(action, i_step)  # 即paper中的random process
            next_state, reward, done, _ = env.step(action)
            ep_reward += reward
            agent.memory.push(state, action, reward, next_state, done)
            agent.update()
            state = next_state
        print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
        ep_steps.append(i_step)
        rewards.append(ep_reward)
        if ma_rewards:
            ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
        else:
            ma_rewards.append(ep_reward)
    print('Complete training!')
    return rewards,ma_rewards
Example #2
0
def train(cfg, env, agent):
    print('开始训练!')
    print(f'环境:{cfg.env_name},算法:{cfg.algo},设备:{cfg.device}')
    ou_noise = OUNoise(env.action_space)  # 动作噪声
    rewards = [] # 记录所有回合的奖励
    ma_rewards = []  # 记录所有回合的滑动平均奖励
    for i_ep in range(cfg.train_eps):
        state = env.reset()
        ou_noise.reset()
        done = False
        ep_reward = 0
        i_step = 0
        while not done:
            i_step += 1
            action = agent.choose_action(state)
            action = ou_noise.get_action(action, i_step) 
            next_state, reward, done, _ = env.step(action)
            ep_reward += reward
            agent.memory.push(state, action, reward, next_state, done)
            agent.update()
            state = next_state
        if (i_ep+1)%10 == 0:
            print('回合:{}/{},奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward))
        rewards.append(ep_reward)
        if ma_rewards:
            ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
        else:
            ma_rewards.append(ep_reward)
    print('完成训练!')
    return rewards, ma_rewards